You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

getrf_parallel.c 23 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #include <stdio.h>
  39. #include "common.h"
  40. static FLOAT dm1 = -1.;
  41. double sqrt(double);
  42. //In this case, the recursive getrf_parallel may overflow the stack.
  43. //Instead, use malloc to alloc job_t.
  44. #if MAX_CPU_NUMBER > GETRF_MEM_ALLOC_THRESHOLD
  45. #define USE_ALLOC_HEAP
  46. #endif
  47. #ifndef CACHE_LINE_SIZE
  48. #define CACHE_LINE_SIZE 8
  49. #endif
  50. #ifndef DIVIDE_RATE
  51. #define DIVIDE_RATE 2
  52. #endif
  53. #define GEMM_PQ MAX(GEMM_P, GEMM_Q)
  54. #define REAL_GEMM_R (GEMM_R - GEMM_PQ)
  55. #ifndef GETRF_FACTOR
  56. #define GETRF_FACTOR 0.75
  57. #endif
  58. #undef GETRF_FACTOR
  59. #define GETRF_FACTOR 1.00
  60. static __inline BLASLONG FORMULA1(BLASLONG M, BLASLONG N, BLASLONG IS, BLASLONG BK, BLASLONG T) {
  61. double m = (double)(M - IS - BK);
  62. double n = (double)(N - IS - BK);
  63. double b = (double)BK;
  64. double a = (double)T;
  65. return (BLASLONG)((n + GETRF_FACTOR * m * b * (1. - a) / (b + m)) / a);
  66. }
  67. #define FORMULA2(M, N, IS, BK, T) (BLASLONG)((double)(N - IS + BK) * (1. - sqrt(1. - 1. / (double)(T))))
  68. static void inner_basic_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  69. BLASLONG is, min_i;
  70. BLASLONG js, min_j;
  71. BLASLONG jjs, min_jj;
  72. BLASLONG m = args -> m;
  73. BLASLONG n = args -> n;
  74. BLASLONG k = args -> k;
  75. BLASLONG lda = args -> lda;
  76. BLASLONG off = args -> ldb;
  77. FLOAT *b = (FLOAT *)args -> b + (k ) * COMPSIZE;
  78. FLOAT *c = (FLOAT *)args -> b + ( k * lda) * COMPSIZE;
  79. FLOAT *d = (FLOAT *)args -> b + (k + k * lda) * COMPSIZE;
  80. FLOAT *sbb = sb;
  81. volatile BLASLONG *flag = (volatile BLASLONG *)args -> d;
  82. blasint *ipiv = (blasint *)args -> c;
  83. if (range_n) {
  84. n = range_n[1] - range_n[0];
  85. c += range_n[0] * lda * COMPSIZE;
  86. d += range_n[0] * lda * COMPSIZE;
  87. }
  88. if (args -> a == NULL) {
  89. TRSM_ILTCOPY(k, k, (FLOAT *)args -> b, lda, 0, sb);
  90. sbb = (FLOAT *)((((BLASULONG)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  91. } else {
  92. sb = (FLOAT *)args -> a;
  93. }
  94. for (js = 0; js < n; js += REAL_GEMM_R) {
  95. min_j = n - js;
  96. if (min_j > REAL_GEMM_R) min_j = REAL_GEMM_R;
  97. for (jjs = js; jjs < js + min_j; jjs += GEMM_UNROLL_N){
  98. min_jj = js + min_j - jjs;
  99. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  100. if (0 && GEMM_UNROLL_N <= 8) {
  101. LASWP_NCOPY(min_jj, off + 1, off + k,
  102. c + (- off + jjs * lda) * COMPSIZE, lda,
  103. ipiv, sbb + k * (jjs - js) * COMPSIZE);
  104. } else {
  105. LASWP_PLUS(min_jj, off + 1, off + k, ZERO,
  106. #ifdef COMPLEX
  107. ZERO,
  108. #endif
  109. c + (- off + jjs * lda) * COMPSIZE, lda, NULL, 0, ipiv, 1);
  110. GEMM_ONCOPY (k, min_jj, c + jjs * lda * COMPSIZE, lda, sbb + (jjs - js) * k * COMPSIZE);
  111. }
  112. for (is = 0; is < k; is += GEMM_P) {
  113. min_i = k - is;
  114. if (min_i > GEMM_P) min_i = GEMM_P;
  115. TRSM_KERNEL_LT(min_i, min_jj, k, dm1,
  116. #ifdef COMPLEX
  117. ZERO,
  118. #endif
  119. sb + k * is * COMPSIZE,
  120. sbb + (jjs - js) * k * COMPSIZE,
  121. c + (is + jjs * lda) * COMPSIZE, lda, is);
  122. }
  123. }
  124. if ((js + REAL_GEMM_R >= n) && (mypos >= 0)) flag[mypos * CACHE_LINE_SIZE] = 0;
  125. for (is = 0; is < m; is += GEMM_P){
  126. min_i = m - is;
  127. if (min_i > GEMM_P) min_i = GEMM_P;
  128. GEMM_ITCOPY (k, min_i, b + is * COMPSIZE, lda, sa);
  129. GEMM_KERNEL_N(min_i, min_j, k, dm1,
  130. #ifdef COMPLEX
  131. ZERO,
  132. #endif
  133. sa, sbb, d + (is + js * lda) * COMPSIZE, lda);
  134. }
  135. }
  136. }
  137. /* Non blocking implementation */
  138. typedef struct {
  139. volatile BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE];
  140. } job_t;
  141. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  142. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  143. #ifndef COMPLEX
  144. #define KERNEL_OPERATION(M, N, K, SA, SB, C, LDC, X, Y) \
  145. GEMM_KERNEL_N(M, N, K, dm1, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
  146. #else
  147. #define KERNEL_OPERATION(M, N, K, SA, SB, C, LDC, X, Y) \
  148. GEMM_KERNEL_N(M, N, K, dm1, ZERO, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
  149. #endif
  150. static int inner_advanced_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  151. job_t *job = (job_t *)args -> common;
  152. BLASLONG xxx, bufferside;
  153. FLOAT *buffer[DIVIDE_RATE];
  154. BLASLONG jjs, min_jj, div_n;
  155. BLASLONG i, current;
  156. BLASLONG is, min_i;
  157. BLASLONG m, n_from, n_to;
  158. BLASLONG k = args -> k;
  159. BLASLONG lda = args -> lda;
  160. BLASLONG off = args -> ldb;
  161. FLOAT *a = (FLOAT *)args -> b + (k ) * COMPSIZE;
  162. FLOAT *b = (FLOAT *)args -> b + ( k * lda) * COMPSIZE;
  163. FLOAT *c = (FLOAT *)args -> b + (k + k * lda) * COMPSIZE;
  164. FLOAT *sbb= sb;
  165. blasint *ipiv = (blasint *)args -> c;
  166. volatile BLASLONG *flag = (volatile BLASLONG *)args -> d;
  167. if (args -> a == NULL) {
  168. TRSM_ILTCOPY(k, k, (FLOAT *)args -> b, lda, 0, sb);
  169. sbb = (FLOAT *)((((BLASULONG)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  170. } else {
  171. sb = (FLOAT *)args -> a;
  172. }
  173. m = range_m[1] - range_m[0];
  174. n_from = range_n[mypos + 0];
  175. n_to = range_n[mypos + 1];
  176. a += range_m[0] * COMPSIZE;
  177. c += range_m[0] * COMPSIZE;
  178. div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE;
  179. buffer[0] = sbb;
  180. for (i = 1; i < DIVIDE_RATE; i++) {
  181. buffer[i] = buffer[i - 1] + GEMM_Q * ((div_n + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1)) * COMPSIZE;
  182. }
  183. for (xxx = n_from, bufferside = 0; xxx < n_to; xxx += div_n, bufferside ++) {
  184. for (i = 0; i < args -> nthreads; i++)
  185. while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {};
  186. for(jjs = xxx; jjs < MIN(n_to, xxx + div_n); jjs += min_jj){
  187. min_jj = MIN(n_to, xxx + div_n) - jjs;
  188. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  189. if (0 && GEMM_UNROLL_N <= 8) {
  190. printf("helllo\n");
  191. LASWP_NCOPY(min_jj, off + 1, off + k,
  192. b + (- off + jjs * lda) * COMPSIZE, lda,
  193. ipiv, buffer[bufferside] + (jjs - xxx) * k * COMPSIZE);
  194. } else {
  195. LASWP_PLUS(min_jj, off + 1, off + k, ZERO,
  196. #ifdef COMPLEX
  197. ZERO,
  198. #endif
  199. b + (- off + jjs * lda) * COMPSIZE, lda, NULL, 0, ipiv, 1);
  200. GEMM_ONCOPY (k, min_jj, b + jjs * lda * COMPSIZE, lda,
  201. buffer[bufferside] + (jjs - xxx) * k * COMPSIZE);
  202. }
  203. for (is = 0; is < k; is += GEMM_P) {
  204. min_i = k - is;
  205. if (min_i > GEMM_P) min_i = GEMM_P;
  206. TRSM_KERNEL_LT(min_i, min_jj, k, dm1,
  207. #ifdef COMPLEX
  208. ZERO,
  209. #endif
  210. sb + k * is * COMPSIZE,
  211. buffer[bufferside] + (jjs - xxx) * k * COMPSIZE,
  212. b + (is + jjs * lda) * COMPSIZE, lda, is);
  213. }
  214. }
  215. for (i = 0; i < args -> nthreads; i++)
  216. job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
  217. }
  218. flag[mypos * CACHE_LINE_SIZE] = 0;
  219. if (m == 0) {
  220. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  221. job[mypos].working[mypos][CACHE_LINE_SIZE * xxx] = 0;
  222. }
  223. }
  224. for(is = 0; is < m; is += min_i){
  225. min_i = m - is;
  226. if (min_i >= GEMM_P * 2) {
  227. min_i = GEMM_P;
  228. } else
  229. if (min_i > GEMM_P) {
  230. min_i = ((min_i + 1) / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1);
  231. }
  232. ICOPY_OPERATION(k, min_i, a, lda, 0, is, sa);
  233. current = mypos;
  234. do {
  235. div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE;
  236. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  237. if ((current != mypos) && (!is)) {
  238. while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {};
  239. }
  240. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k,
  241. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  242. c, lda, is, xxx);
  243. if (is + min_i >= m) {
  244. job[current].working[mypos][CACHE_LINE_SIZE * bufferside] = 0;
  245. }
  246. }
  247. current ++;
  248. if (current >= args -> nthreads) current = 0;
  249. } while (current != mypos);
  250. }
  251. for (i = 0; i < args -> nthreads; i++) {
  252. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  253. while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {};
  254. }
  255. }
  256. return 0;
  257. }
  258. #if 1
  259. blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
  260. BLASLONG m, n, mn, lda, offset;
  261. BLASLONG init_bk, next_bk, range_n_mine[2], range_n_new[2];
  262. blasint *ipiv, iinfo, info;
  263. int mode;
  264. blas_arg_t newarg;
  265. FLOAT *a, *sbb;
  266. FLOAT dummyalpha[2] = {ZERO, ZERO};
  267. blas_queue_t queue[MAX_CPU_NUMBER];
  268. BLASLONG range_M[MAX_CPU_NUMBER + 1];
  269. BLASLONG range_N[MAX_CPU_NUMBER + 1];
  270. #ifndef USE_ALLOC_HEAP
  271. job_t job[MAX_CPU_NUMBER];
  272. #else
  273. job_t * job=NULL;
  274. #endif
  275. BLASLONG width, nn, mm;
  276. BLASLONG i, j, k, is, bk;
  277. BLASLONG num_cpu;
  278. #ifdef _MSC_VER
  279. BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE];
  280. #else
  281. volatile BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE] __attribute__((aligned(128)));
  282. #endif
  283. #ifndef COMPLEX
  284. #ifdef XDOUBLE
  285. mode = BLAS_XDOUBLE | BLAS_REAL;
  286. #elif defined(DOUBLE)
  287. mode = BLAS_DOUBLE | BLAS_REAL;
  288. #else
  289. mode = BLAS_SINGLE | BLAS_REAL;
  290. #endif
  291. #else
  292. #ifdef XDOUBLE
  293. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  294. #elif defined(DOUBLE)
  295. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  296. #else
  297. mode = BLAS_SINGLE | BLAS_COMPLEX;
  298. #endif
  299. #endif
  300. m = args -> m;
  301. n = args -> n;
  302. a = (FLOAT *)args -> a;
  303. lda = args -> lda;
  304. ipiv = (blasint *)args -> c;
  305. offset = 0;
  306. if (range_n) {
  307. m -= range_n[0];
  308. n = range_n[1] - range_n[0];
  309. offset = range_n[0];
  310. a += range_n[0] * (lda + 1) * COMPSIZE;
  311. }
  312. if (m <= 0 || n <= 0) return 0;
  313. newarg.c = ipiv;
  314. newarg.lda = lda;
  315. info = 0;
  316. mn = MIN(m, n);
  317. init_bk = (mn / 2 + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  318. if (init_bk > GEMM_Q) init_bk = GEMM_Q;
  319. if (init_bk <= GEMM_UNROLL_N) {
  320. info = GETF2(args, NULL, range_n, sa, sb, 0);
  321. return info;
  322. }
  323. next_bk = init_bk;
  324. bk = mn;
  325. if (bk > next_bk) bk = next_bk;
  326. range_n_new[0] = offset;
  327. range_n_new[1] = offset + bk;
  328. iinfo = CNAME(args, NULL, range_n_new, sa, sb, 0);
  329. if (iinfo && !info) info = iinfo;
  330. #ifdef USE_ALLOC_HEAP
  331. job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t));
  332. if(job==NULL){
  333. fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__);
  334. exit(1);
  335. }
  336. #endif
  337. newarg.common = (void *)job;
  338. TRSM_ILTCOPY(bk, bk, a, lda, 0, sb);
  339. sbb = (FLOAT *)((((BLASULONG)(sb + bk * bk * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  340. is = 0;
  341. num_cpu = 0;
  342. while (is < mn) {
  343. width = (FORMULA1(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  344. if (width > mn - is - bk) width = mn - is - bk;
  345. if (width < bk) {
  346. next_bk = (FORMULA2(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N) & ~(GEMM_UNROLL_N - 1);
  347. if (next_bk > bk) next_bk = bk;
  348. width = next_bk;
  349. if (width > mn - is - bk) width = mn - is - bk;
  350. }
  351. if (num_cpu > 0) exec_blas_async_wait(num_cpu, &queue[0]);
  352. mm = m - bk - is;
  353. nn = n - bk - is;
  354. newarg.a = sb;
  355. newarg.b = a + (is + is * lda) * COMPSIZE;
  356. newarg.d = (void *)flag;
  357. newarg.m = mm;
  358. newarg.n = nn;
  359. newarg.k = bk;
  360. newarg.ldb = is + offset;
  361. nn -= width;
  362. range_n_mine[0] = 0;
  363. range_n_mine[1] = width;
  364. range_N[0] = width;
  365. range_M[0] = 0;
  366. num_cpu = 0;
  367. while (nn > 0){
  368. if (mm >= nn) {
  369. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  370. if (nn < width) width = nn;
  371. nn -= width;
  372. range_N[num_cpu + 1] = range_N[num_cpu] + width;
  373. width = blas_quickdivide(mm + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  374. if (mm < width) width = mm;
  375. if (nn <= 0) width = mm;
  376. mm -= width;
  377. range_M[num_cpu + 1] = range_M[num_cpu] + width;
  378. } else {
  379. width = blas_quickdivide(mm + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  380. if (mm < width) width = mm;
  381. mm -= width;
  382. range_M[num_cpu + 1] = range_M[num_cpu] + width;
  383. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  384. if (nn < width) width = nn;
  385. if (mm <= 0) width = nn;
  386. nn -= width;
  387. range_N[num_cpu + 1] = range_N[num_cpu] + width;
  388. }
  389. queue[num_cpu].mode = mode;
  390. queue[num_cpu].routine = inner_advanced_thread;
  391. queue[num_cpu].args = &newarg;
  392. queue[num_cpu].range_m = &range_M[num_cpu];
  393. queue[num_cpu].range_n = &range_N[0];
  394. queue[num_cpu].sa = NULL;
  395. queue[num_cpu].sb = NULL;
  396. queue[num_cpu].next = &queue[num_cpu + 1];
  397. flag[num_cpu * CACHE_LINE_SIZE] = 1;
  398. num_cpu ++;
  399. }
  400. newarg.nthreads = num_cpu;
  401. if (num_cpu > 0) {
  402. for (j = 0; j < num_cpu; j++) {
  403. for (i = 0; i < num_cpu; i++) {
  404. for (k = 0; k < DIVIDE_RATE; k++) {
  405. job[j].working[i][CACHE_LINE_SIZE * k] = 0;
  406. }
  407. }
  408. }
  409. }
  410. is += bk;
  411. bk = mn - is;
  412. if (bk > next_bk) bk = next_bk;
  413. range_n_new[0] = offset + is;
  414. range_n_new[1] = offset + is + bk;
  415. if (num_cpu > 0) {
  416. queue[num_cpu - 1].next = NULL;
  417. exec_blas_async(0, &queue[0]);
  418. inner_basic_thread(&newarg, NULL, range_n_mine, sa, sbb, -1);
  419. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  420. if (iinfo && !info) info = iinfo + is;
  421. for (i = 0; i < num_cpu; i ++) while (flag[i * CACHE_LINE_SIZE]) {};
  422. TRSM_ILTCOPY(bk, bk, a + (is + is * lda) * COMPSIZE, lda, 0, sb);
  423. } else {
  424. inner_basic_thread(&newarg, NULL, range_n_mine, sa, sbb, -1);
  425. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  426. if (iinfo && !info) info = iinfo + is;
  427. }
  428. }
  429. next_bk = init_bk;
  430. is = 0;
  431. while (is < mn) {
  432. bk = mn - is;
  433. if (bk > next_bk) bk = next_bk;
  434. width = (FORMULA1(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  435. if (width > mn - is - bk) width = mn - is - bk;
  436. if (width < bk) {
  437. next_bk = (FORMULA2(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N) & ~(GEMM_UNROLL_N - 1);
  438. if (next_bk > bk) next_bk = bk;
  439. }
  440. blas_level1_thread(mode, bk, is + bk + offset + 1, mn + offset, (void *)dummyalpha,
  441. a + (- offset + is * lda) * COMPSIZE, lda, NULL, 0,
  442. ipiv, 1, (void *)LASWP_PLUS, args -> nthreads);
  443. is += bk;
  444. }
  445. #ifdef USE_ALLOC_HEAP
  446. free(job);
  447. #endif
  448. return info;
  449. }
  450. #else
  451. blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
  452. BLASLONG m, n, mn, lda, offset;
  453. BLASLONG i, is, bk, init_bk, next_bk, range_n_new[2];
  454. blasint *ipiv, iinfo, info;
  455. int mode;
  456. blas_arg_t newarg;
  457. FLOAT *a, *sbb;
  458. FLOAT dummyalpha[2] = {ZERO, ZERO};
  459. blas_queue_t queue[MAX_CPU_NUMBER];
  460. BLASLONG range[MAX_CPU_NUMBER + 1];
  461. BLASLONG width, nn, num_cpu;
  462. volatile BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE] __attribute__((aligned(128)));
  463. #ifndef COMPLEX
  464. #ifdef XDOUBLE
  465. mode = BLAS_XDOUBLE | BLAS_REAL;
  466. #elif defined(DOUBLE)
  467. mode = BLAS_DOUBLE | BLAS_REAL;
  468. #else
  469. mode = BLAS_SINGLE | BLAS_REAL;
  470. #endif
  471. #else
  472. #ifdef XDOUBLE
  473. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  474. #elif defined(DOUBLE)
  475. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  476. #else
  477. mode = BLAS_SINGLE | BLAS_COMPLEX;
  478. #endif
  479. #endif
  480. m = args -> m;
  481. n = args -> n;
  482. a = (FLOAT *)args -> a;
  483. lda = args -> lda;
  484. ipiv = (blasint *)args -> c;
  485. offset = 0;
  486. if (range_n) {
  487. m -= range_n[0];
  488. n = range_n[1] - range_n[0];
  489. offset = range_n[0];
  490. a += range_n[0] * (lda + 1) * COMPSIZE;
  491. }
  492. if (m <= 0 || n <= 0) return 0;
  493. newarg.c = ipiv;
  494. newarg.lda = lda;
  495. newarg.common = NULL;
  496. newarg.nthreads = args -> nthreads;
  497. mn = MIN(m, n);
  498. init_bk = (mn / 2 + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  499. if (init_bk > GEMM_Q) init_bk = GEMM_Q;
  500. if (init_bk <= GEMM_UNROLL_N) {
  501. info = GETF2(args, NULL, range_n, sa, sb, 0);
  502. return info;
  503. }
  504. width = FORMULA1(m, n, 0, init_bk, args -> nthreads);
  505. width = (width + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  506. if (width > n - init_bk) width = n - init_bk;
  507. if (width < init_bk) {
  508. BLASLONG temp;
  509. temp = FORMULA2(m, n, 0, init_bk, args -> nthreads);
  510. temp = (temp + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  511. if (temp < GEMM_UNROLL_N) temp = GEMM_UNROLL_N;
  512. if (temp < init_bk) init_bk = temp;
  513. }
  514. next_bk = init_bk;
  515. bk = init_bk;
  516. range_n_new[0] = offset;
  517. range_n_new[1] = offset + bk;
  518. info = CNAME(args, NULL, range_n_new, sa, sb, 0);
  519. TRSM_ILTCOPY(bk, bk, a, lda, 0, sb);
  520. is = 0;
  521. num_cpu = 0;
  522. sbb = (FLOAT *)((((BLASULONG)(sb + GEMM_PQ * GEMM_PQ * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  523. while (is < mn) {
  524. width = FORMULA1(m, n, is, bk, args -> nthreads);
  525. width = (width + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  526. if (width < bk) {
  527. next_bk = FORMULA2(m, n, is, bk, args -> nthreads);
  528. next_bk = (next_bk + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  529. if (next_bk > bk) next_bk = bk;
  530. #if 0
  531. if (next_bk < GEMM_UNROLL_N) next_bk = MIN(GEMM_UNROLL_N, mn - bk - is);
  532. #else
  533. if (next_bk < GEMM_UNROLL_N) next_bk = MAX(GEMM_UNROLL_N, mn - bk - is);
  534. #endif
  535. width = next_bk;
  536. }
  537. if (width > mn - is - bk) {
  538. next_bk = mn - is - bk;
  539. width = next_bk;
  540. }
  541. nn = n - bk - is;
  542. if (width > nn) width = nn;
  543. if (num_cpu > 1) exec_blas_async_wait(num_cpu - 1, &queue[1]);
  544. range[0] = 0;
  545. range[1] = width;
  546. num_cpu = 1;
  547. nn -= width;
  548. newarg.a = sb;
  549. newarg.b = a + (is + is * lda) * COMPSIZE;
  550. newarg.d = (void *)flag;
  551. newarg.m = m - bk - is;
  552. newarg.n = n - bk - is;
  553. newarg.k = bk;
  554. newarg.ldb = is + offset;
  555. while (nn > 0){
  556. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu);
  557. nn -= width;
  558. if (nn < 0) width = width + nn;
  559. range[num_cpu + 1] = range[num_cpu] + width;
  560. queue[num_cpu].mode = mode;
  561. //queue[num_cpu].routine = inner_advanced_thread;
  562. queue[num_cpu].routine = (void *)inner_basic_thread;
  563. queue[num_cpu].args = &newarg;
  564. queue[num_cpu].range_m = NULL;
  565. queue[num_cpu].range_n = &range[num_cpu];
  566. queue[num_cpu].sa = NULL;
  567. queue[num_cpu].sb = NULL;
  568. queue[num_cpu].next = &queue[num_cpu + 1];
  569. flag[num_cpu * CACHE_LINE_SIZE] = 1;
  570. num_cpu ++;
  571. }
  572. queue[num_cpu - 1].next = NULL;
  573. is += bk;
  574. bk = n - is;
  575. if (bk > next_bk) bk = next_bk;
  576. range_n_new[0] = offset + is;
  577. range_n_new[1] = offset + is + bk;
  578. if (num_cpu > 1) {
  579. exec_blas_async(1, &queue[1]);
  580. #if 0
  581. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, 0);
  582. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  583. #else
  584. if (range[1] >= bk * 4) {
  585. BLASLONG myrange[2];
  586. myrange[0] = 0;
  587. myrange[1] = bk;
  588. inner_basic_thread(&newarg, NULL, &myrange[0], sa, sbb, -1);
  589. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  590. myrange[0] = bk;
  591. myrange[1] = range[1];
  592. inner_basic_thread(&newarg, NULL, &myrange[0], sa, sbb, -1);
  593. } else {
  594. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, -1);
  595. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  596. }
  597. #endif
  598. for (i = 1; i < num_cpu; i ++) while (flag[i * CACHE_LINE_SIZE]) {};
  599. TRSM_ILTCOPY(bk, bk, a + (is + is * lda) * COMPSIZE, lda, 0, sb);
  600. } else {
  601. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, -1);
  602. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  603. }
  604. if (iinfo && !info) info = iinfo + is;
  605. }
  606. next_bk = init_bk;
  607. bk = init_bk;
  608. is = 0;
  609. while (is < mn) {
  610. bk = mn - is;
  611. if (bk > next_bk) bk = next_bk;
  612. width = FORMULA1(m, n, is, bk, args -> nthreads);
  613. width = (width + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  614. if (width < bk) {
  615. next_bk = FORMULA2(m, n, is, bk, args -> nthreads);
  616. next_bk = (next_bk + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
  617. if (next_bk > bk) next_bk = bk;
  618. #if 0
  619. if (next_bk < GEMM_UNROLL_N) next_bk = MIN(GEMM_UNROLL_N, mn - bk - is);
  620. #else
  621. if (next_bk < GEMM_UNROLL_N) next_bk = MAX(GEMM_UNROLL_N, mn - bk - is);
  622. #endif
  623. }
  624. if (width > mn - is - bk) {
  625. next_bk = mn - is - bk;
  626. width = next_bk;
  627. }
  628. blas_level1_thread(mode, bk, is + bk + offset + 1, mn + offset, (void *)dummyalpha,
  629. a + (- offset + is * lda) * COMPSIZE, lda, NULL, 0,
  630. ipiv, 1, (void *)LASWP_PLUS, args -> nthreads);
  631. is += bk;
  632. }
  633. return info;
  634. }
  635. #endif