You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

strt05.f 9.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323
  1. *> \brief \b STRT05
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE STRT05( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X,
  12. * LDX, XACT, LDXACT, FERR, BERR, RESLTS )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER DIAG, TRANS, UPLO
  16. * INTEGER LDA, LDB, LDX, LDXACT, N, NRHS
  17. * ..
  18. * .. Array Arguments ..
  19. * REAL A( LDA, * ), B( LDB, * ), BERR( * ), FERR( * ),
  20. * $ RESLTS( * ), X( LDX, * ), XACT( LDXACT, * )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> STRT05 tests the error bounds from iterative refinement for the
  30. *> computed solution to a system of equations A*X = B, where A is a
  31. *> triangular n by n matrix.
  32. *>
  33. *> RESLTS(1) = test of the error bound
  34. *> = norm(X - XACT) / ( norm(X) * FERR )
  35. *>
  36. *> A large value is returned if this ratio is not less than one.
  37. *>
  38. *> RESLTS(2) = residual from the iterative refinement routine
  39. *> = the maximum of BERR / ( (n+1)*EPS + (*) ), where
  40. *> (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] UPLO
  47. *> \verbatim
  48. *> UPLO is CHARACTER*1
  49. *> Specifies whether the matrix A is upper or lower triangular.
  50. *> = 'U': Upper triangular
  51. *> = 'L': Lower triangular
  52. *> \endverbatim
  53. *>
  54. *> \param[in] TRANS
  55. *> \verbatim
  56. *> TRANS is CHARACTER*1
  57. *> Specifies the form of the system of equations.
  58. *> = 'N': A * X = B (No transpose)
  59. *> = 'T': A'* X = B (Transpose)
  60. *> = 'C': A'* X = B (Conjugate transpose = Transpose)
  61. *> \endverbatim
  62. *>
  63. *> \param[in] DIAG
  64. *> \verbatim
  65. *> DIAG is CHARACTER*1
  66. *> Specifies whether or not the matrix A is unit triangular.
  67. *> = 'N': Non-unit triangular
  68. *> = 'U': Unit triangular
  69. *> \endverbatim
  70. *>
  71. *> \param[in] N
  72. *> \verbatim
  73. *> N is INTEGER
  74. *> The number of rows of the matrices X, B, and XACT, and the
  75. *> order of the matrix A. N >= 0.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] NRHS
  79. *> \verbatim
  80. *> NRHS is INTEGER
  81. *> The number of columns of the matrices X, B, and XACT.
  82. *> NRHS >= 0.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] A
  86. *> \verbatim
  87. *> A is REAL array, dimension (LDA,N)
  88. *> The triangular matrix A. If UPLO = 'U', the leading n by n
  89. *> upper triangular part of the array A contains the upper
  90. *> triangular matrix, and the strictly lower triangular part of
  91. *> A is not referenced. If UPLO = 'L', the leading n by n lower
  92. *> triangular part of the array A contains the lower triangular
  93. *> matrix, and the strictly upper triangular part of A is not
  94. *> referenced. If DIAG = 'U', the diagonal elements of A are
  95. *> also not referenced and are assumed to be 1.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] LDA
  99. *> \verbatim
  100. *> LDA is INTEGER
  101. *> The leading dimension of the array A. LDA >= max(1,N).
  102. *> \endverbatim
  103. *>
  104. *> \param[in] B
  105. *> \verbatim
  106. *> B is REAL array, dimension (LDB,NRHS)
  107. *> The right hand side vectors for the system of linear
  108. *> equations.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] LDB
  112. *> \verbatim
  113. *> LDB is INTEGER
  114. *> The leading dimension of the array B. LDB >= max(1,N).
  115. *> \endverbatim
  116. *>
  117. *> \param[in] X
  118. *> \verbatim
  119. *> X is REAL array, dimension (LDX,NRHS)
  120. *> The computed solution vectors. Each vector is stored as a
  121. *> column of the matrix X.
  122. *> \endverbatim
  123. *>
  124. *> \param[in] LDX
  125. *> \verbatim
  126. *> LDX is INTEGER
  127. *> The leading dimension of the array X. LDX >= max(1,N).
  128. *> \endverbatim
  129. *>
  130. *> \param[in] XACT
  131. *> \verbatim
  132. *> XACT is REAL array, dimension (LDX,NRHS)
  133. *> The exact solution vectors. Each vector is stored as a
  134. *> column of the matrix XACT.
  135. *> \endverbatim
  136. *>
  137. *> \param[in] LDXACT
  138. *> \verbatim
  139. *> LDXACT is INTEGER
  140. *> The leading dimension of the array XACT. LDXACT >= max(1,N).
  141. *> \endverbatim
  142. *>
  143. *> \param[in] FERR
  144. *> \verbatim
  145. *> FERR is REAL array, dimension (NRHS)
  146. *> The estimated forward error bounds for each solution vector
  147. *> X. If XTRUE is the true solution, FERR bounds the magnitude
  148. *> of the largest entry in (X - XTRUE) divided by the magnitude
  149. *> of the largest entry in X.
  150. *> \endverbatim
  151. *>
  152. *> \param[in] BERR
  153. *> \verbatim
  154. *> BERR is REAL array, dimension (NRHS)
  155. *> The componentwise relative backward error of each solution
  156. *> vector (i.e., the smallest relative change in any entry of A
  157. *> or B that makes X an exact solution).
  158. *> \endverbatim
  159. *>
  160. *> \param[out] RESLTS
  161. *> \verbatim
  162. *> RESLTS is REAL array, dimension (2)
  163. *> The maximum over the NRHS solution vectors of the ratios:
  164. *> RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
  165. *> RESLTS(2) = BERR / ( (n+1)*EPS + (*) )
  166. *> \endverbatim
  167. *
  168. * Authors:
  169. * ========
  170. *
  171. *> \author Univ. of Tennessee
  172. *> \author Univ. of California Berkeley
  173. *> \author Univ. of Colorado Denver
  174. *> \author NAG Ltd.
  175. *
  176. *> \date November 2011
  177. *
  178. *> \ingroup single_lin
  179. *
  180. * =====================================================================
  181. SUBROUTINE STRT05( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X,
  182. $ LDX, XACT, LDXACT, FERR, BERR, RESLTS )
  183. *
  184. * -- LAPACK test routine (version 3.4.0) --
  185. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  186. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  187. * November 2011
  188. *
  189. * .. Scalar Arguments ..
  190. CHARACTER DIAG, TRANS, UPLO
  191. INTEGER LDA, LDB, LDX, LDXACT, N, NRHS
  192. * ..
  193. * .. Array Arguments ..
  194. REAL A( LDA, * ), B( LDB, * ), BERR( * ), FERR( * ),
  195. $ RESLTS( * ), X( LDX, * ), XACT( LDXACT, * )
  196. * ..
  197. *
  198. * =====================================================================
  199. *
  200. * .. Parameters ..
  201. REAL ZERO, ONE
  202. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  203. * ..
  204. * .. Local Scalars ..
  205. LOGICAL NOTRAN, UNIT, UPPER
  206. INTEGER I, IFU, IMAX, J, K
  207. REAL AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
  208. * ..
  209. * .. External Functions ..
  210. LOGICAL LSAME
  211. INTEGER ISAMAX
  212. REAL SLAMCH
  213. EXTERNAL LSAME, ISAMAX, SLAMCH
  214. * ..
  215. * .. Intrinsic Functions ..
  216. INTRINSIC ABS, MAX, MIN
  217. * ..
  218. * .. Executable Statements ..
  219. *
  220. * Quick exit if N = 0 or NRHS = 0.
  221. *
  222. IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
  223. RESLTS( 1 ) = ZERO
  224. RESLTS( 2 ) = ZERO
  225. RETURN
  226. END IF
  227. *
  228. EPS = SLAMCH( 'Epsilon' )
  229. UNFL = SLAMCH( 'Safe minimum' )
  230. OVFL = ONE / UNFL
  231. UPPER = LSAME( UPLO, 'U' )
  232. NOTRAN = LSAME( TRANS, 'N' )
  233. UNIT = LSAME( DIAG, 'U' )
  234. *
  235. * Test 1: Compute the maximum of
  236. * norm(X - XACT) / ( norm(X) * FERR )
  237. * over all the vectors X and XACT using the infinity-norm.
  238. *
  239. ERRBND = ZERO
  240. DO 30 J = 1, NRHS
  241. IMAX = ISAMAX( N, X( 1, J ), 1 )
  242. XNORM = MAX( ABS( X( IMAX, J ) ), UNFL )
  243. DIFF = ZERO
  244. DO 10 I = 1, N
  245. DIFF = MAX( DIFF, ABS( X( I, J )-XACT( I, J ) ) )
  246. 10 CONTINUE
  247. *
  248. IF( XNORM.GT.ONE ) THEN
  249. GO TO 20
  250. ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
  251. GO TO 20
  252. ELSE
  253. ERRBND = ONE / EPS
  254. GO TO 30
  255. END IF
  256. *
  257. 20 CONTINUE
  258. IF( DIFF / XNORM.LE.FERR( J ) ) THEN
  259. ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
  260. ELSE
  261. ERRBND = ONE / EPS
  262. END IF
  263. 30 CONTINUE
  264. RESLTS( 1 ) = ERRBND
  265. *
  266. * Test 2: Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where
  267. * (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
  268. *
  269. IFU = 0
  270. IF( UNIT )
  271. $ IFU = 1
  272. DO 90 K = 1, NRHS
  273. DO 80 I = 1, N
  274. TMP = ABS( B( I, K ) )
  275. IF( UPPER ) THEN
  276. IF( .NOT.NOTRAN ) THEN
  277. DO 40 J = 1, I - IFU
  278. TMP = TMP + ABS( A( J, I ) )*ABS( X( J, K ) )
  279. 40 CONTINUE
  280. IF( UNIT )
  281. $ TMP = TMP + ABS( X( I, K ) )
  282. ELSE
  283. IF( UNIT )
  284. $ TMP = TMP + ABS( X( I, K ) )
  285. DO 50 J = I + IFU, N
  286. TMP = TMP + ABS( A( I, J ) )*ABS( X( J, K ) )
  287. 50 CONTINUE
  288. END IF
  289. ELSE
  290. IF( NOTRAN ) THEN
  291. DO 60 J = 1, I - IFU
  292. TMP = TMP + ABS( A( I, J ) )*ABS( X( J, K ) )
  293. 60 CONTINUE
  294. IF( UNIT )
  295. $ TMP = TMP + ABS( X( I, K ) )
  296. ELSE
  297. IF( UNIT )
  298. $ TMP = TMP + ABS( X( I, K ) )
  299. DO 70 J = I + IFU, N
  300. TMP = TMP + ABS( A( J, I ) )*ABS( X( J, K ) )
  301. 70 CONTINUE
  302. END IF
  303. END IF
  304. IF( I.EQ.1 ) THEN
  305. AXBI = TMP
  306. ELSE
  307. AXBI = MIN( AXBI, TMP )
  308. END IF
  309. 80 CONTINUE
  310. TMP = BERR( K ) / ( ( N+1 )*EPS+( N+1 )*UNFL /
  311. $ MAX( AXBI, ( N+1 )*UNFL ) )
  312. IF( K.EQ.1 ) THEN
  313. RESLTS( 2 ) = TMP
  314. ELSE
  315. RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
  316. END IF
  317. 90 CONTINUE
  318. *
  319. RETURN
  320. *
  321. * End of STRT05
  322. *
  323. END