You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

trsm_kernel_RT_rvv_v1.c 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828
  1. /***************************************************************************
  2. Copyright (c) 2022, The OpenBLAS Project
  3. All rights reserved.
  4. Redistribution and use in source and binary forms, with or without
  5. modification, are permitted provided that the following conditions are
  6. met:
  7. 1. Redistributions of source code must retain the above copyright
  8. notice, this list of conditions and the following disclaimer.
  9. 2. Redistributions in binary form must reproduce the above copyright
  10. notice, this list of conditions and the following disclaimer in
  11. the documentation and/or other materials provided with the
  12. distribution.
  13. 3. Neither the name of the OpenBLAS project nor the names of
  14. its contributors may be used to endorse or promote products
  15. derived from this software without specific prior written permission.
  16. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  19. ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
  20. LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  21. DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  22. SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  23. CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  24. OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  25. USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. *****************************************************************************/
  27. #include "common.h"
  28. #if !defined(DOUBLE)
  29. #define VSETVL(n) vsetvl_e32m2(n)
  30. #define VSETVL_MAX vsetvlmax_e32m2()
  31. #define FLOAT_V_T vfloat32m2_t
  32. #define VLEV_FLOAT vle32_v_f32m2
  33. #define VLSEV_FLOAT vlse32_v_f32m2
  34. #define VLSEG2_FLOAT vlseg2e32_v_f32m2
  35. #define VSEV_FLOAT vse32_v_f32m2
  36. #define VSSEV_FLOAT vsse32_v_f32m2
  37. #define VSSEG2_FLOAT vsseg2e32_v_f32m2
  38. #define VFMACCVF_FLOAT vfmacc_vf_f32m2
  39. #define VFNMSACVF_FLOAT vfnmsac_vf_f32m2
  40. #else
  41. #define VSETVL(n) vsetvl_e64m2(n)
  42. #define VSETVL_MAX vsetvlmax_e64m2()
  43. #define FLOAT_V_T vfloat64m2_t
  44. #define VLEV_FLOAT vle64_v_f64m2
  45. #define VLSEV_FLOAT vlse64_v_f64m2
  46. #define VLSEG2_FLOAT vlseg2e64_v_f64m2
  47. #define VSEV_FLOAT vse64_v_f64m2
  48. #define VSSEV_FLOAT vsse64_v_f64m2
  49. #define VSSEG2_FLOAT vsseg2e64_v_f64m2
  50. #define VFMACCVF_FLOAT vfmacc_vf_f64m2
  51. #define VFNMSACVF_FLOAT vfnmsac_vf_f64m2
  52. #endif
  53. static FLOAT dm1 = -1.;
  54. #ifdef CONJ
  55. #define GEMM_KERNEL GEMM_KERNEL_R
  56. #else
  57. #define GEMM_KERNEL GEMM_KERNEL_N
  58. #endif
  59. #if GEMM_DEFAULT_UNROLL_N == 1
  60. #define GEMM_UNROLL_N_SHIFT 0
  61. #endif
  62. #if GEMM_DEFAULT_UNROLL_N == 2
  63. #define GEMM_UNROLL_N_SHIFT 1
  64. #endif
  65. #if GEMM_DEFAULT_UNROLL_N == 4
  66. #define GEMM_UNROLL_N_SHIFT 2
  67. #endif
  68. #if GEMM_DEFAULT_UNROLL_N == 8
  69. #define GEMM_UNROLL_N_SHIFT 3
  70. #endif
  71. #if GEMM_DEFAULT_UNROLL_N == 16
  72. #define GEMM_UNROLL_N_SHIFT 4
  73. #endif
  74. // Optimizes the implementation in ../arm64/trsm_kernel_RT_sve.c
  75. #ifndef COMPLEX
  76. #if GEMM_DEFAULT_UNROLL_N == 1
  77. static inline void solve(BLASLONG m, BLASLONG n, FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc) {
  78. FLOAT aa, bb;
  79. FLOAT *pb, *pc;
  80. BLASLONG stride_ldc = sizeof(FLOAT) * ldc;
  81. int i, j, k;
  82. size_t vl;
  83. FLOAT_V_T vb, vc;
  84. a += (n - 1) * m;
  85. b += (n - 1) * n;
  86. for (i = n - 1; i >= 0; i--) {
  87. bb = *(b + i);
  88. for (j = 0; j < m; j ++) {
  89. aa = *(c + j + i * ldc);
  90. aa *= bb;
  91. *a = aa;
  92. *(c + j + i * ldc) = aa;
  93. a ++;
  94. pb = b;
  95. pc = c + j;
  96. for (k = i; k > 0; k -= vl)
  97. {
  98. vl = VSETVL(k);
  99. vc = VLSEV_FLOAT(pc, stride_ldc, vl);
  100. vb = VLEV_FLOAT(pb, vl);
  101. vc = VFNMSACVF_FLOAT(vc, aa, vb, vl);
  102. VSSEV_FLOAT(pc, stride_ldc, vc, vl);
  103. pb += vl;
  104. pc++;
  105. }
  106. }
  107. b -= n;
  108. a -= 2 * m;
  109. }
  110. }
  111. #elif GEMM_DEFAULT_UNROLL_N == 2
  112. static inline void solve(BLASLONG m, BLASLONG n, FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc) {
  113. FLOAT aa0, aa1, bb;
  114. FLOAT *pb, *pc;
  115. FLOAT *pa0, *pa1, *pc0, *pc1;
  116. BLASLONG stride_ldc = sizeof(FLOAT) * ldc;
  117. int i, j, k;
  118. size_t vl;
  119. FLOAT_V_T vb, vc0, vc1;
  120. a += (n - 1) * m;
  121. b += (n - 1) * n;
  122. for (i = n - 1; i >= 0; i--)
  123. {
  124. bb = *(b + i);
  125. pc = c + i * ldc;
  126. for (j = 0; j < m/2; j ++)
  127. {
  128. pa0 = pc + j * 2;
  129. pa1 = pc + j * 2 + 1;
  130. aa0 = *pa0 * bb;
  131. aa1 = *pa1 * bb;
  132. *pa0 = aa0;
  133. *pa1 = aa1;
  134. *a = aa0;
  135. *(a + 1)= aa1;
  136. a += 2;
  137. pb = b;
  138. pc0 = c + j * 2;
  139. pc1 = pc0 + 1;
  140. for (k = i; k > 0; k -= vl)
  141. {
  142. vl = VSETVL(k);
  143. vc0 = VLSEV_FLOAT(pc0, stride_ldc, vl);
  144. vc1 = VLSEV_FLOAT(pc1, stride_ldc, vl);
  145. vb = VLEV_FLOAT(pb, vl);
  146. vc0 = VFNMSACVF_FLOAT(vc0, aa0, vb, vl);
  147. vc1 = VFNMSACVF_FLOAT(vc1, aa1, vb, vl);
  148. VSSEV_FLOAT(pc0, stride_ldc, vc0, vl);
  149. VSSEV_FLOAT(pc1, stride_ldc, vc1, vl);
  150. pb += vl;
  151. pc0++;
  152. pc1++;
  153. }
  154. }
  155. pc += (m/2)*2;
  156. if (m & 1)
  157. {
  158. pa0 = pc;
  159. aa0 = *pa0 * bb;
  160. *pa0 = aa0;
  161. *a = aa0;
  162. a += 1;
  163. pb = b;
  164. pc0 = pc - i * ldc;
  165. for (k = i; k > 0; k -= vl)
  166. {
  167. vl = VSETVL(k);
  168. vc0 = VLSEV_FLOAT(pc0, stride_ldc, vl);
  169. vb = VLEV_FLOAT(pb, vl);
  170. vc0 = VFNMSACVF_FLOAT(vc0, aa0, vb, vl);
  171. VSSEV_FLOAT(pc0, stride_ldc, vc0, vl);
  172. pb += vl;
  173. pc0++;
  174. }
  175. }
  176. b -= n;
  177. a -= 2 * m;
  178. }
  179. }
  180. #elif GEMM_DEFAULT_UNROLL_N == 4
  181. static inline void solve(BLASLONG m, BLASLONG n, FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc) {
  182. FLOAT aa0, aa1, aa2, aa3;
  183. FLOAT bb;
  184. FLOAT *pb, *pc;
  185. FLOAT *pa0, *pa1, *pa2, *pa3;
  186. FLOAT *pc0, *pc1, *pc2, *pc3;
  187. BLASLONG stride_ldc = sizeof(FLOAT) * ldc;
  188. int i, j, k;
  189. size_t vl;
  190. FLOAT_V_T vb, vc0, vc1, vc2, vc3;
  191. a += (n - 1) * m;
  192. b += (n - 1) * n;
  193. for (i = n - 1; i >= 0; i--)
  194. {
  195. bb = *(b + i);
  196. pc = c + i * ldc;
  197. for (j = 0; j < m/4; j ++)
  198. {
  199. pa0 = pc + j * 4;
  200. pa1 = pa0 + 1;
  201. pa2 = pa1 + 1;
  202. pa3 = pa2 + 1;
  203. aa0 = *pa0 * bb;
  204. aa1 = *pa1 * bb;
  205. aa2 = *pa2 * bb;
  206. aa3 = *pa3 * bb;
  207. *pa0 = aa0;
  208. *pa1 = aa1;
  209. *pa2 = aa2;
  210. *pa3 = aa3;
  211. *a = aa0;
  212. *(a + 1)= aa1;
  213. *(a + 2)= aa2;
  214. *(a + 3)= aa3;
  215. a += 4;
  216. pb = b;
  217. pc0 = c + j * 4;
  218. pc1 = pc0 + 1;
  219. pc2 = pc1 + 1;
  220. pc3 = pc2 + 1;
  221. for (k = i; k > 0; k -= vl)
  222. {
  223. vl = VSETVL(k);
  224. vc0 = VLSEV_FLOAT(pc0, stride_ldc, vl);
  225. vc1 = VLSEV_FLOAT(pc1, stride_ldc, vl);
  226. vc2 = VLSEV_FLOAT(pc2, stride_ldc, vl);
  227. vc3 = VLSEV_FLOAT(pc3, stride_ldc, vl);
  228. vb = VLEV_FLOAT(pb, vl);
  229. vc0 = VFNMSACVF_FLOAT(vc0, aa0, vb, vl);
  230. vc1 = VFNMSACVF_FLOAT(vc1, aa1, vb, vl);
  231. vc2 = VFNMSACVF_FLOAT(vc2, aa2, vb, vl);
  232. vc3 = VFNMSACVF_FLOAT(vc3, aa3, vb, vl);
  233. VSSEV_FLOAT(pc0, stride_ldc, vc0, vl);
  234. VSSEV_FLOAT(pc1, stride_ldc, vc1, vl);
  235. VSSEV_FLOAT(pc2, stride_ldc, vc2, vl);
  236. VSSEV_FLOAT(pc3, stride_ldc, vc3, vl);
  237. pb += vl;
  238. pc0++;
  239. pc1++;
  240. pc2++;
  241. pc3++;
  242. }
  243. }
  244. pc += (m/4)*4;
  245. if (m & 2)
  246. {
  247. pa0 = pc + j * 2;
  248. pa1 = pa0 + 1;
  249. aa0 = *pa0 * bb;
  250. aa1 = *pa1 * bb;
  251. *pa0 = aa0;
  252. *pa1 = aa1;
  253. *a = aa0;
  254. *(a + 1)= aa1;
  255. a += 2;
  256. pb = b;
  257. pc0 = c + j * 4;
  258. pc1 = pc0 + 1;
  259. for (k = i; k > 0; k -= vl)
  260. {
  261. vl = VSETVL(k);
  262. vc0 = VLSEV_FLOAT(pc0, stride_ldc, vl);
  263. vc1 = VLSEV_FLOAT(pc1, stride_ldc, vl);
  264. vb = VLEV_FLOAT(pb, vl);
  265. vc0 = VFNMSACVF_FLOAT(vc0, aa0, vb, vl);
  266. vc1 = VFNMSACVF_FLOAT(vc1, aa1, vb, vl);
  267. VSSEV_FLOAT(pc0, stride_ldc, vc0, vl);
  268. VSSEV_FLOAT(pc1, stride_ldc, vc1, vl);
  269. pb += vl;
  270. pc0++;
  271. pc1++;
  272. }
  273. pc += 2;
  274. }
  275. if (m & 1)
  276. {
  277. pa0 = pc;
  278. aa0 = *pa0 * bb;
  279. *pa0 = aa0;
  280. *a = aa0;
  281. a += 1;
  282. pb = b;
  283. pc0 = pc - i * ldc;
  284. for (k = i; k > 0; k -= vl)
  285. {
  286. vl = VSETVL(k);
  287. vc0 = VLSEV_FLOAT(pc0, stride_ldc, vl);
  288. vb = VLEV_FLOAT(pb, vl);
  289. vc0 = VFNMSACVF_FLOAT(vc0, aa0, vb, vl);
  290. VSSEV_FLOAT(pc0, stride_ldc, vc0, vl);
  291. pb += vl;
  292. pc0++;
  293. }
  294. }
  295. b -= n;
  296. a -= 2 * m;
  297. }
  298. }
  299. #elif GEMM_DEFAULT_UNROLL_N == 8
  300. static inline void solve(BLASLONG m, BLASLONG n, FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc) {
  301. FLOAT aa0, aa1, aa2, aa3, aa4, aa5, aa6, aa7;
  302. FLOAT bb;
  303. FLOAT *pb, *pc;
  304. FLOAT *pa0, *pa1, *pa2, *pa3, *pa4, *pa5, *pa6, *pa7;
  305. FLOAT *pc0, *pc1, *pc2, *pc3, *pc4, *pc5, *pc6, *pc7;
  306. BLASLONG stride_ldc = sizeof(FLOAT) * ldc;
  307. int i, j, k;
  308. size_t vl;
  309. FLOAT_V_T vb, vc0, vc1, vc2, vc3, vc4, vc5, vc6, vc7;
  310. a += (n - 1) * m;
  311. b += (n - 1) * n;
  312. for (i = n - 1; i >= 0; i--)
  313. {
  314. bb = *(b + i);
  315. pc = c + i * ldc;
  316. for (j = 0; j < m/8; j ++)
  317. {
  318. pa0 = pc + j * 8;
  319. pa1 = pa0 + 1;
  320. pa2 = pa1 + 1;
  321. pa3 = pa2 + 1;
  322. pa4 = pa3 + 1;
  323. pa5 = pa4 + 1;
  324. pa6 = pa5 + 1;
  325. pa7 = pa6 + 1;
  326. aa0 = *pa0 * bb;
  327. aa1 = *pa1 * bb;
  328. aa2 = *pa2 * bb;
  329. aa3 = *pa3 * bb;
  330. aa4 = *pa4 * bb;
  331. aa5 = *pa5 * bb;
  332. aa6 = *pa6 * bb;
  333. aa7 = *pa7 * bb;
  334. *pa0 = aa0;
  335. *pa1 = aa1;
  336. *pa2 = aa2;
  337. *pa3 = aa3;
  338. *pa4 = aa4;
  339. *pa5 = aa5;
  340. *pa6 = aa6;
  341. *pa7 = aa7;
  342. *a = aa0;
  343. *(a + 1)= aa1;
  344. *(a + 2)= aa2;
  345. *(a + 3)= aa3;
  346. *(a + 4)= aa4;
  347. *(a + 5)= aa5;
  348. *(a + 6)= aa6;
  349. *(a + 7)= aa7;
  350. a += 8;
  351. pb = b;
  352. pc0 = c + j * 8;
  353. pc1 = pc0 + 1;
  354. pc2 = pc1 + 1;
  355. pc3 = pc2 + 1;
  356. pc4 = pc3 + 1;
  357. pc5 = pc4 + 1;
  358. pc6 = pc5 + 1;
  359. pc7 = pc6 + 1;
  360. for (k = i; k > 0; k -= vl)
  361. {
  362. vl = VSETVL(k);
  363. vc0 = VLSEV_FLOAT(pc0, stride_ldc, vl);
  364. vc1 = VLSEV_FLOAT(pc1, stride_ldc, vl);
  365. vc2 = VLSEV_FLOAT(pc2, stride_ldc, vl);
  366. vc3 = VLSEV_FLOAT(pc3, stride_ldc, vl);
  367. vc4 = VLSEV_FLOAT(pc4, stride_ldc, vl);
  368. vc5 = VLSEV_FLOAT(pc5, stride_ldc, vl);
  369. vc6 = VLSEV_FLOAT(pc6, stride_ldc, vl);
  370. vc7 = VLSEV_FLOAT(pc7, stride_ldc, vl);
  371. vb = VLEV_FLOAT(pb, vl);
  372. vc0 = VFNMSACVF_FLOAT(vc0, aa0, vb, vl);
  373. vc1 = VFNMSACVF_FLOAT(vc1, aa1, vb, vl);
  374. vc2 = VFNMSACVF_FLOAT(vc2, aa2, vb, vl);
  375. vc3 = VFNMSACVF_FLOAT(vc3, aa3, vb, vl);
  376. vc4 = VFNMSACVF_FLOAT(vc4, aa4, vb, vl);
  377. vc5 = VFNMSACVF_FLOAT(vc5, aa5, vb, vl);
  378. vc6 = VFNMSACVF_FLOAT(vc6, aa6, vb, vl);
  379. vc7 = VFNMSACVF_FLOAT(vc7, aa7, vb, vl);
  380. VSSEV_FLOAT(pc0, stride_ldc, vc0, vl);
  381. VSSEV_FLOAT(pc1, stride_ldc, vc1, vl);
  382. VSSEV_FLOAT(pc2, stride_ldc, vc2, vl);
  383. VSSEV_FLOAT(pc3, stride_ldc, vc3, vl);
  384. VSSEV_FLOAT(pc4, stride_ldc, vc4, vl);
  385. VSSEV_FLOAT(pc5, stride_ldc, vc5, vl);
  386. VSSEV_FLOAT(pc6, stride_ldc, vc6, vl);
  387. VSSEV_FLOAT(pc7, stride_ldc, vc7, vl);
  388. pb += vl;
  389. pc0++;
  390. pc1++;
  391. pc2++;
  392. pc3++;
  393. pc4++;
  394. pc5++;
  395. pc6++;
  396. pc7++;
  397. }
  398. }
  399. pc += (m/8)*8;
  400. if (m & 4)
  401. {
  402. pa0 = pc;
  403. pa1 = pa0 + 1;
  404. pa2 = pa1 + 1;
  405. pa3 = pa2 + 1;
  406. aa0 = *pa0 * bb;
  407. aa1 = *pa1 * bb;
  408. aa2 = *pa2 * bb;
  409. aa3 = *pa3 * bb;
  410. *pa0 = aa0;
  411. *pa1 = aa1;
  412. *pa2 = aa2;
  413. *pa3 = aa3;
  414. *a = aa0;
  415. *(a + 1)= aa1;
  416. *(a + 2)= aa2;
  417. *(a + 3)= aa3;
  418. a += 4;
  419. pb = b;
  420. pc0 = pc - i * ldc;
  421. pc1 = pc0 + 1;
  422. pc2 = pc1 + 1;
  423. pc3 = pc2 + 1;
  424. for (k = i; k > 0; k -= vl)
  425. {
  426. vl = VSETVL(k);
  427. vc0 = VLSEV_FLOAT(pc0, stride_ldc, vl);
  428. vc1 = VLSEV_FLOAT(pc1, stride_ldc, vl);
  429. vc2 = VLSEV_FLOAT(pc2, stride_ldc, vl);
  430. vc3 = VLSEV_FLOAT(pc3, stride_ldc, vl);
  431. vb = VLEV_FLOAT(pb, vl);
  432. vc0 = VFNMSACVF_FLOAT(vc0, aa0, vb, vl);
  433. vc1 = VFNMSACVF_FLOAT(vc1, aa1, vb, vl);
  434. vc2 = VFNMSACVF_FLOAT(vc2, aa2, vb, vl);
  435. vc3 = VFNMSACVF_FLOAT(vc3, aa3, vb, vl);
  436. VSSEV_FLOAT(pc0, stride_ldc, vc0, vl);
  437. VSSEV_FLOAT(pc1, stride_ldc, vc1, vl);
  438. VSSEV_FLOAT(pc2, stride_ldc, vc2, vl);
  439. VSSEV_FLOAT(pc3, stride_ldc, vc3, vl);
  440. pb += vl;
  441. pc0++;
  442. pc1++;
  443. pc2++;
  444. pc3++;
  445. }
  446. pc += 4;
  447. }
  448. if (m & 2)
  449. {
  450. pa0 = pc;
  451. pa1 = pa0 + 1;
  452. aa0 = *pa0 * bb;
  453. aa1 = *pa1 * bb;
  454. *pa0 = aa0;
  455. *pa1 = aa1;
  456. *a = aa0;
  457. *(a + 1)= aa1;
  458. a += 2;
  459. pb = b;
  460. pc0 = pc - i * ldc;
  461. pc1 = pc0 + 1;
  462. for (k = i; k > 0; k -= vl)
  463. {
  464. vl = VSETVL(k);
  465. vc0 = VLSEV_FLOAT(pc0, stride_ldc, vl);
  466. vc1 = VLSEV_FLOAT(pc1, stride_ldc, vl);
  467. vb = VLEV_FLOAT(pb, vl);
  468. vc0 = VFNMSACVF_FLOAT(vc0, aa0, vb, vl);
  469. vc1 = VFNMSACVF_FLOAT(vc1, aa1, vb, vl);
  470. VSSEV_FLOAT(pc0, stride_ldc, vc0, vl);
  471. VSSEV_FLOAT(pc1, stride_ldc, vc1, vl);
  472. pb += vl;
  473. pc0++;
  474. pc1++;
  475. }
  476. pc += 2;
  477. }
  478. if (m & 1)
  479. {
  480. pa0 = pc;
  481. aa0 = *pa0 * bb;
  482. *pa0 = aa0;
  483. *a = aa0;
  484. a += 1;
  485. pb = b;
  486. pc0 = pc - i * ldc;
  487. for (k = i; k > 0; k -= vl)
  488. {
  489. vl = VSETVL(k);
  490. vc0 = VLSEV_FLOAT(pc0, stride_ldc, vl);
  491. vb = VLEV_FLOAT(pb, vl);
  492. vc0 = VFNMSACVF_FLOAT(vc0, aa0, vb, vl);
  493. VSSEV_FLOAT(pc0, stride_ldc, vc0, vl);
  494. pb += vl;
  495. pc0++;
  496. }
  497. }
  498. b -= n;
  499. a -= 2 * m;
  500. }
  501. }
  502. #else
  503. static inline void solve(BLASLONG m, BLASLONG n, FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc) {
  504. FLOAT aa, bb;
  505. int i, j, k;
  506. a += (n - 1) * m;
  507. b += (n - 1) * n;
  508. for (i = n - 1; i >= 0; i--) {
  509. bb = *(b + i);
  510. for (j = 0; j < m; j ++) {
  511. aa = *(c + j + i * ldc);
  512. aa *= bb;
  513. *a = aa;
  514. *(c + j + i * ldc) = aa;
  515. a ++;
  516. for (k = 0; k < i; k ++){
  517. *(c + j + k * ldc) -= aa * *(b + k);
  518. }
  519. }
  520. b -= n;
  521. a -= 2 * m;
  522. }
  523. }
  524. #endif
  525. #else
  526. static inline void solve(BLASLONG m, BLASLONG n, FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc) {
  527. FLOAT aa1, aa2;
  528. FLOAT bb1, bb2;
  529. FLOAT cc1, cc2;
  530. int i, j, k;
  531. ldc *= 2;
  532. a += (n - 1) * m * 2;
  533. b += (n - 1) * n * 2;
  534. for (i = n - 1; i >= 0; i--) {
  535. bb1 = *(b + i * 2 + 0);
  536. bb2 = *(b + i * 2 + 1);
  537. for (j = 0; j < m; j ++) {
  538. aa1 = *(c + j * 2 + 0 + i * ldc);
  539. aa2 = *(c + j * 2 + 1 + i * ldc);
  540. #ifndef CONJ
  541. cc1 = aa1 * bb1 - aa2 * bb2;
  542. cc2 = aa1 * bb2 + aa2 * bb1;
  543. #else
  544. cc1 = aa1 * bb1 + aa2 * bb2;
  545. cc2 = - aa1 * bb2 + aa2 * bb1;
  546. #endif
  547. *(a + 0) = cc1;
  548. *(a + 1) = cc2;
  549. *(c + j * 2 + 0 + i * ldc) = cc1;
  550. *(c + j * 2 + 1 + i * ldc) = cc2;
  551. a += 2;
  552. for (k = 0; k < i; k ++){
  553. #ifndef CONJ
  554. *(c + j * 2 + 0 + k * ldc) -= cc1 * *(b + k * 2 + 0) - cc2 * *(b + k * 2 + 1);
  555. *(c + j * 2 + 1 + k * ldc) -= cc1 * *(b + k * 2 + 1) + cc2 * *(b + k * 2 + 0);
  556. #else
  557. *(c + j * 2 + 0 + k * ldc) -= cc1 * *(b + k * 2 + 0) + cc2 * *(b + k * 2 + 1);
  558. *(c + j * 2 + 1 + k * ldc) -= -cc1 * *(b + k * 2 + 1) + cc2 * *(b + k * 2 + 0);
  559. #endif
  560. }
  561. }
  562. b -= n * 2;
  563. a -= 4 * m;
  564. }
  565. }
  566. #endif
  567. int CNAME(BLASLONG m, BLASLONG n, BLASLONG k, FLOAT dummy1,
  568. #ifdef COMPLEX
  569. FLOAT dummy2,
  570. #endif
  571. FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc, BLASLONG offset){
  572. BLASLONG i, j;
  573. FLOAT *aa, *cc;
  574. BLASLONG kk;
  575. size_t vl = VSETVL_MAX;
  576. //fprintf(stderr, "%s , %s, m = %4ld n = %4ld k = %4ld offset = %4ld\n", __FILE__, __FUNCTION__, m, n, k, offset); // Debug
  577. kk = n - offset;
  578. c += n * ldc * COMPSIZE;
  579. b += n * k * COMPSIZE;
  580. if (n & (GEMM_UNROLL_N - 1)) {
  581. j = 1;
  582. while (j < GEMM_UNROLL_N) {
  583. if (n & j) {
  584. aa = a;
  585. b -= j * k * COMPSIZE;
  586. c -= j * ldc* COMPSIZE;
  587. cc = c;
  588. i = vl;
  589. if (i <= m) {
  590. do {
  591. if (k - kk > 0) {
  592. GEMM_KERNEL(vl, j, k - kk, dm1,
  593. #ifdef COMPLEX
  594. ZERO,
  595. #endif
  596. aa + vl * kk * COMPSIZE,
  597. b + j * kk * COMPSIZE,
  598. cc,
  599. ldc);
  600. }
  601. solve(vl, j,
  602. aa + (kk - j) * vl * COMPSIZE,
  603. b + (kk - j) * j * COMPSIZE,
  604. cc, ldc);
  605. aa += vl * k * COMPSIZE;
  606. cc += vl * COMPSIZE;
  607. i += vl;
  608. } while (i <= m);
  609. }
  610. i = m % vl;
  611. if (i) {
  612. if (k - kk > 0) {
  613. GEMM_KERNEL(i, j, k - kk, dm1,
  614. #ifdef COMPLEX
  615. ZERO,
  616. #endif
  617. aa + i * kk * COMPSIZE,
  618. b + j * kk * COMPSIZE,
  619. cc, ldc);
  620. }
  621. solve(i, j,
  622. aa + (kk - j) * i * COMPSIZE,
  623. b + (kk - j) * j * COMPSIZE,
  624. cc, ldc);
  625. aa += i * k * COMPSIZE;
  626. cc += i * COMPSIZE;
  627. }
  628. kk -= j;
  629. }
  630. j <<= 1;
  631. }
  632. }
  633. j = (n >> GEMM_UNROLL_N_SHIFT);
  634. if (j > 0) {
  635. do {
  636. aa = a;
  637. b -= GEMM_UNROLL_N * k * COMPSIZE;
  638. c -= GEMM_UNROLL_N * ldc * COMPSIZE;
  639. cc = c;
  640. i = vl;
  641. if (i <= m) {
  642. do {
  643. if (k - kk > 0) {
  644. GEMM_KERNEL(vl, GEMM_UNROLL_N, k - kk, dm1,
  645. #ifdef COMPLEX
  646. ZERO,
  647. #endif
  648. aa + vl * kk * COMPSIZE,
  649. b + GEMM_UNROLL_N * kk * COMPSIZE,
  650. cc,
  651. ldc);
  652. }
  653. solve(vl, GEMM_UNROLL_N,
  654. aa + (kk - GEMM_UNROLL_N) * vl * COMPSIZE,
  655. b + (kk - GEMM_UNROLL_N) * GEMM_UNROLL_N * COMPSIZE,
  656. cc, ldc);
  657. aa += vl * k * COMPSIZE;
  658. cc += vl * COMPSIZE;
  659. i += vl;
  660. } while (i <= m);
  661. }
  662. i = m % vl;
  663. if (i) {
  664. if (k - kk > 0) {
  665. GEMM_KERNEL(i, GEMM_UNROLL_N, k - kk, dm1,
  666. #ifdef COMPLEX
  667. ZERO,
  668. #endif
  669. aa + i * kk * COMPSIZE,
  670. b + GEMM_UNROLL_N * kk * COMPSIZE,
  671. cc,
  672. ldc);
  673. }
  674. solve(i, GEMM_UNROLL_N,
  675. aa + (kk - GEMM_UNROLL_N) * i * COMPSIZE,
  676. b + (kk - GEMM_UNROLL_N) * GEMM_UNROLL_N * COMPSIZE,
  677. cc, ldc);
  678. aa += i * k * COMPSIZE;
  679. cc += i * COMPSIZE;
  680. }
  681. kk -= GEMM_UNROLL_N;
  682. j --;
  683. } while (j > 0);
  684. }
  685. return 0;
  686. }