You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

trsm_kernel_LT_rvv_v1.c 9.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328
  1. /***************************************************************************
  2. Copyright (c) 2022, The OpenBLAS Project
  3. All rights reserved.
  4. Redistribution and use in source and binary forms, with or without
  5. modification, are permitted provided that the following conditions are
  6. met:
  7. 1. Redistributions of source code must retain the above copyright
  8. notice, this list of conditions and the following disclaimer.
  9. 2. Redistributions in binary form must reproduce the above copyright
  10. notice, this list of conditions and the following disclaimer in
  11. the documentation and/or other materials provided with the
  12. distribution.
  13. 3. Neither the name of the OpenBLAS project nor the names of
  14. its contributors may be used to endorse or promote products
  15. derived from this software without specific prior written permission.
  16. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  19. ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
  20. LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  21. DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  22. SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  23. CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  24. OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  25. USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. *****************************************************************************/
  27. #include "common.h"
  28. #if !defined(DOUBLE)
  29. #define VSETVL(n) __riscv_vsetvl_e32m2(n)
  30. #define VSETVL_MAX __riscv_vsetvlmax_e32m2()
  31. #define FLOAT_V_T vfloat32m2_t
  32. #define VLSEV_FLOAT __riscv_vlse32_v_f32m2
  33. #define VSSEV_FLOAT __riscv_vsse32_v_f32m2
  34. #define VSEV_FLOAT __riscv_vse32_v_f32m2
  35. #define VLSEG2_FLOAT __riscv_vlseg2e32_v_f32m2
  36. #define VSSEG2_FLOAT __riscv_vsseg2e32_v_f32m2
  37. #define VLSSEG2_FLOAT __riscv_vlsseg2e32_v_f32m2
  38. #define VSSSEG2_FLOAT __riscv_vssseg2e32_v_f32m2
  39. #define VFMACCVF_FLOAT __riscv_vfmacc_vf_f32m2
  40. #define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f32m2
  41. #define VFMULVF_FLOAT __riscv_vfmul_vf_f32m2
  42. #else
  43. #define VSETVL(n) __riscv_vsetvl_e64m2(n)
  44. #define VSETVL_MAX __riscv_vsetvlmax_e64m2()
  45. #define FLOAT_V_T vfloat64m2_t
  46. #define VLSEV_FLOAT __riscv_vlse64_v_f64m2
  47. #define VSSEV_FLOAT __riscv_vsse64_v_f64m2
  48. #define VSEV_FLOAT __riscv_vse64_v_f64m2
  49. #define VLSEG2_FLOAT __riscv_vlseg2e64_v_f64m2
  50. #define VSSEG2_FLOAT __riscv_vsseg2e64_v_f64m2
  51. #define VLSSEG2_FLOAT __riscv_vlsseg2e64_v_f64m2
  52. #define VSSSEG2_FLOAT __riscv_vssseg2e64_v_f64m2
  53. #define VFMVVF_FLOAT __riscv_vfmv_v_f_f64m2
  54. #define VFMACCVF_FLOAT __riscv_vfmacc_vf_f64m2
  55. #define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f64m2
  56. #define VFMULVF_FLOAT __riscv_vfmul_vf_f64m2
  57. #endif
  58. static FLOAT dm1 = -1.;
  59. #ifdef CONJ
  60. #define GEMM_KERNEL GEMM_KERNEL_L
  61. #else
  62. #define GEMM_KERNEL GEMM_KERNEL_N
  63. #endif
  64. #if GEMM_DEFAULT_UNROLL_N == 1
  65. #define GEMM_UNROLL_N_SHIFT 0
  66. #endif
  67. #if GEMM_DEFAULT_UNROLL_N == 2
  68. #define GEMM_UNROLL_N_SHIFT 1
  69. #endif
  70. #if GEMM_DEFAULT_UNROLL_N == 4
  71. #define GEMM_UNROLL_N_SHIFT 2
  72. #endif
  73. #if GEMM_DEFAULT_UNROLL_N == 8
  74. #define GEMM_UNROLL_N_SHIFT 3
  75. #endif
  76. #if GEMM_DEFAULT_UNROLL_N == 16
  77. #define GEMM_UNROLL_N_SHIFT 4
  78. #endif
  79. // Optimizes the implementation in ../arm64/trsm_kernel_LT_sve.c
  80. #ifndef COMPLEX
  81. static inline void solve(BLASLONG m, BLASLONG n, FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc) {
  82. FLOAT aa;
  83. FLOAT* pc;
  84. int i, j, k;
  85. BLASLONG stride_ldc = sizeof(FLOAT) * ldc;
  86. FLOAT_V_T vb, vc;
  87. size_t vl;
  88. for (i = 0; i < m; i++) {
  89. aa = *(a + i);
  90. pc = c;
  91. for (j = n; j > 0; j -= vl) {
  92. vl = VSETVL(j);
  93. vb = VLSEV_FLOAT(pc + i, stride_ldc, vl);
  94. vb = VFMULVF_FLOAT(vb, aa, vl);
  95. VSEV_FLOAT(b, vb, vl);
  96. VSSEV_FLOAT(pc + i, stride_ldc, vb, vl);
  97. b += vl;
  98. for (k = i + 1; k < m; k++) {
  99. vc = VLSEV_FLOAT(pc + k, stride_ldc, vl);
  100. vc = VFNMSACVF_FLOAT(vc, *(a + k), vb, vl);
  101. VSSEV_FLOAT(pc + k, stride_ldc, vc, vl);
  102. }
  103. pc += vl * ldc;
  104. }
  105. a += m;
  106. }
  107. }
  108. #else
  109. static inline void solve(BLASLONG m, BLASLONG n, FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc) {
  110. FLOAT aa1, aa2;
  111. FLOAT *pc;
  112. int i, j, k;
  113. BLASLONG stride_ldc = sizeof(FLOAT) * ldc * 2;
  114. FLOAT_V_T vb1, vb2, vc1, vc2, vs1, vs2;
  115. size_t vl;
  116. ldc *= 2;
  117. for (i = 0; i < m; i++) {
  118. aa1 = *(a + i * 2 + 0);
  119. aa2 = *(a + i * 2 + 1);
  120. pc = c;
  121. for (j = n; j > 0; j -= vl) {
  122. vl = VSETVL(j);
  123. VLSSEG2_FLOAT(&vb1, &vb2, pc + i * 2, stride_ldc, vl);
  124. #ifndef CONJ
  125. vs1 = VFMULVF_FLOAT(vb1, aa1, vl);
  126. vs1 = VFNMSACVF_FLOAT(vs1, aa2, vb2, vl);
  127. vs2 = VFMULVF_FLOAT(vb2, aa1, vl);
  128. vs2 = VFMACCVF_FLOAT(vs2, aa2, vb1, vl);
  129. #else
  130. vs1 = VFMULVF_FLOAT(vb1, aa1, vl);
  131. vs1 = VFMACCVF_FLOAT(vs1, aa2, vb2, vl);
  132. vs2 = VFMULVF_FLOAT(vb2, aa1, vl);
  133. vs2 = VFNMSACVF_FLOAT(vs2, aa2, vb1, vl);
  134. #endif
  135. VSSEG2_FLOAT(b, vs1, vs2, vl);
  136. VSSSEG2_FLOAT(pc + i * 2, stride_ldc, vs1, vs2, vl);
  137. b += vl * 2;
  138. for (k = i + 1; k < m; k++) {
  139. VLSSEG2_FLOAT(&vc1, &vc2, pc + k * 2, stride_ldc, vl);
  140. #ifndef CONJ
  141. vc1 = VFMACCVF_FLOAT(vc1, *(a + k * 2 + 1), vs2, vl);
  142. vc1 = VFNMSACVF_FLOAT(vc1, *(a + k * 2 + 0), vs1, vl);
  143. vc2 = VFNMSACVF_FLOAT(vc2, *(a + k * 2 + 1), vs1, vl);
  144. vc2 = VFNMSACVF_FLOAT(vc2, *(a + k * 2 + 0), vs2, vl);
  145. #else
  146. vc1 = VFNMSACVF_FLOAT(vc1, *(a + k * 2 + 1), vs2, vl);
  147. vc1 = VFNMSACVF_FLOAT(vc1, *(a + k * 2 + 0), vs1, vl);
  148. vc2 = VFMACCVF_FLOAT(vc2, *(a + k * 2 + 1), vs1, vl);
  149. vc2 = VFNMSACVF_FLOAT(vc2, *(a + k * 2 + 0), vs2, vl);
  150. #endif
  151. VSSSEG2_FLOAT(pc + k * 2, stride_ldc, vc1, vc2, vl);
  152. }
  153. pc += vl * ldc * 2;
  154. }
  155. a += m * 2;
  156. }
  157. }
  158. #endif
  159. int CNAME(BLASLONG m, BLASLONG n, BLASLONG k, FLOAT dummy1,
  160. #ifdef COMPLEX
  161. FLOAT dummy2,
  162. #endif
  163. FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc, BLASLONG offset){
  164. FLOAT *aa, *cc;
  165. BLASLONG kk;
  166. BLASLONG i, j;
  167. size_t vl = VSETVL_MAX;
  168. //fprintf(stderr, "%s , %s, m = %4ld n = %4ld k = %4ld offset = %4ld\n", __FILE__, __FUNCTION__, m, n, k, offset); // Debug
  169. j = (n >> GEMM_UNROLL_N_SHIFT);
  170. while (j > 0) {
  171. kk = offset;
  172. aa = a;
  173. cc = c;
  174. i = vl;
  175. while (i <= m) {
  176. if (kk > 0) {
  177. GEMM_KERNEL(vl, GEMM_UNROLL_N, kk, dm1,
  178. #ifdef COMPLEX
  179. ZERO,
  180. #endif
  181. aa, b, cc, ldc);
  182. }
  183. solve(vl, GEMM_UNROLL_N,
  184. aa + kk * vl * COMPSIZE,
  185. b + kk * GEMM_UNROLL_N * COMPSIZE,
  186. cc, ldc);
  187. aa += vl * k * COMPSIZE;
  188. cc += vl * COMPSIZE;
  189. kk += vl;
  190. i += vl;
  191. }
  192. i = m % vl;
  193. if (i) {
  194. if (kk > 0) {
  195. GEMM_KERNEL(i, GEMM_UNROLL_N, kk, dm1,
  196. #ifdef COMPLEX
  197. ZERO,
  198. #endif
  199. aa, b, cc, ldc);
  200. }
  201. solve(i, GEMM_UNROLL_N,
  202. aa + kk * i * COMPSIZE,
  203. b + kk * GEMM_UNROLL_N * COMPSIZE,
  204. cc, ldc);
  205. aa += i * k * COMPSIZE;
  206. cc += i * COMPSIZE;
  207. kk += i;
  208. }
  209. b += GEMM_UNROLL_N * k * COMPSIZE;
  210. c += GEMM_UNROLL_N * ldc * COMPSIZE;
  211. j --;
  212. }
  213. if (n & (GEMM_UNROLL_N - 1)) {
  214. j = (GEMM_UNROLL_N >> 1);
  215. while (j > 0) {
  216. if (n & j) {
  217. kk = offset;
  218. aa = a;
  219. cc = c;
  220. i = vl;
  221. while (i <= m) {
  222. if (kk > 0) {
  223. GEMM_KERNEL(vl, j, kk, dm1,
  224. #ifdef COMPLEX
  225. ZERO,
  226. #endif
  227. aa,
  228. b,
  229. cc,
  230. ldc);
  231. }
  232. solve(vl, j,
  233. aa + kk * vl * COMPSIZE,
  234. b + kk * j * COMPSIZE, cc, ldc);
  235. aa += vl * k * COMPSIZE;
  236. cc += vl * COMPSIZE;
  237. kk += vl;
  238. i += vl;
  239. }
  240. i = m % vl;
  241. if (i) {
  242. if (kk > 0) {
  243. GEMM_KERNEL(i, j, kk, dm1,
  244. #ifdef COMPLEX
  245. ZERO,
  246. #endif
  247. aa,
  248. b,
  249. cc,
  250. ldc);
  251. }
  252. solve(i, j,
  253. aa + kk * i * COMPSIZE,
  254. b + kk * j * COMPSIZE, cc, ldc);
  255. aa += i * k * COMPSIZE;
  256. cc += i * COMPSIZE;
  257. kk += i;
  258. }
  259. b += j * k * COMPSIZE;
  260. c += j * ldc * COMPSIZE;
  261. }
  262. j >>= 1;
  263. }
  264. }
  265. return 0;
  266. }