You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgemv_t_msa.c 36 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591
  1. /*******************************************************************************
  2. Copyright (c) 2016, The OpenBLAS Project
  3. All rights reserved.
  4. Redistribution and use in source and binary forms, with or without
  5. modification, are permitted provided that the following conditions are
  6. met:
  7. 1. Redistributions of source code must retain the above copyright
  8. notice, this list of conditions and the following disclaimer.
  9. 2. Redistributions in binary form must reproduce the above copyright
  10. notice, this list of conditions and the following disclaimer in
  11. the documentation and/or other materials provided with the
  12. distribution.
  13. 3. Neither the name of the OpenBLAS project nor the names of
  14. its contributors may be used to endorse or promote products
  15. derived from this software without specific prior written permission.
  16. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  19. ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
  20. LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  21. DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  22. SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  23. CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  24. OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  25. USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. *******************************************************************************/
  27. #include "common.h"
  28. #include "macros_msa.h"
  29. #undef OP0
  30. #undef OP1
  31. #undef OP2
  32. #undef OP3
  33. #undef OP4
  34. #if !defined(CONJ)
  35. #if !defined(XCONJ)
  36. #define OP0 -=
  37. #define OP1 +=
  38. #define OP2 +=
  39. #else
  40. #define OP0 +=
  41. #define OP1 +=
  42. #define OP2 -=
  43. #endif
  44. #else
  45. #if !defined(XCONJ)
  46. #define OP0 +=
  47. #define OP1 -=
  48. #define OP2 +=
  49. #else
  50. #define OP0 -=
  51. #define OP1 -=
  52. #define OP2 -=
  53. #endif
  54. #endif
  55. #define ZGEMV_T_8x1() \
  56. LD_DP4(pa0, 2, t0, t1, t2, t3); \
  57. LD_DP4(pa0 + 8, 2, t4, t5, t6, t7); \
  58. \
  59. PCKEVOD_D2_DP(t1, t0, src0r, src0i); \
  60. PCKEVOD_D2_DP(t3, t2, src1r, src1i); \
  61. PCKEVOD_D2_DP(t5, t4, src2r, src2i); \
  62. PCKEVOD_D2_DP(t7, t6, src3r, src3i); \
  63. \
  64. tp0r += src0r * x0r; \
  65. tp0i OP1 src0r * x0i; \
  66. tp0r OP0 src0i * x0i; \
  67. tp0i OP2 src0i * x0r; \
  68. \
  69. tp0r += src2r * x2r; \
  70. tp0i OP1 src2r * x2i; \
  71. tp0r OP0 src2i * x2i; \
  72. tp0i OP2 src2i * x2r; \
  73. \
  74. tp0r += src1r * x1r; \
  75. tp0i OP1 src1r * x1i; \
  76. tp0r OP0 src1i * x1i; \
  77. tp0i OP2 src1i * x1r; \
  78. \
  79. tp0r += src3r * x3r; \
  80. tp0i OP1 src3r * x3i; \
  81. tp0r OP0 src3i * x3i; \
  82. tp0i OP2 src3i * x3r; \
  83. #define ZGEMV_T_4x1() \
  84. LD_DP4(pa0, 2, t0, t1, t2, t3); \
  85. \
  86. PCKEVOD_D2_DP(t1, t0, src0r, src0i); \
  87. PCKEVOD_D2_DP(t3, t2, src1r, src1i); \
  88. \
  89. tp0r += src0r * x0r; \
  90. tp0r += src1r * x1r; \
  91. tp0r OP0 src0i * x0i; \
  92. tp0r OP0 src1i * x1i; \
  93. \
  94. tp0i OP1 src0r * x0i; \
  95. tp0i OP1 src1r * x1i; \
  96. tp0i OP2 src0i * x0r; \
  97. tp0i OP2 src1i * x1r; \
  98. #define ZGEMV_T_2x1() \
  99. LD_DP2(pa0, 2, t0, t1); \
  100. \
  101. PCKEVOD_D2_DP(t1, t0, src0r, src0i); \
  102. \
  103. tp0r += src0r * x0r; \
  104. tp0r OP0 src0i * x0i; \
  105. \
  106. tp0i OP1 src0r * x0i; \
  107. tp0i OP2 src0i * x0r; \
  108. #define ZGEMV_T_1x1() \
  109. temp0r += pa0[0] * x[0 * inc_x2]; \
  110. temp0r OP0 pa0[1] * x[0 * inc_x2 + 1]; \
  111. \
  112. temp0i OP1 pa0[0] * x[0 * inc_x2 + 1]; \
  113. temp0i OP2 pa0[1] * x[0 * inc_x2]; \
  114. #define ZSCALE_STORE_Y1_GP() \
  115. res0r = y[0 * inc_y2]; \
  116. res0i = y[0 * inc_y2 + 1]; \
  117. \
  118. res0r += alphar * temp0r; \
  119. res0r OP0 alphai * temp0i; \
  120. \
  121. res0i OP1 alphar * temp0i; \
  122. res0i OP2 alphai * temp0r; \
  123. \
  124. y[0 * inc_y2] = res0r; \
  125. y[0 * inc_y2 + 1] = res0i; \
  126. #define ZLOAD_X8_VECTOR() \
  127. LD_DP4(x, 2, x0, x1, x2, x3); \
  128. LD_DP4(x + 8, 2, x4, x5, x6, x7); \
  129. \
  130. PCKEVOD_D2_DP(x1, x0, x0r, x0i); \
  131. PCKEVOD_D2_DP(x3, x2, x1r, x1i); \
  132. PCKEVOD_D2_DP(x5, x4, x2r, x2i); \
  133. PCKEVOD_D2_DP(x7, x6, x3r, x3i); \
  134. #define ZLOAD_X4_VECTOR() \
  135. LD_DP4(x, 2, x0, x1, x2, x3); \
  136. PCKEVOD_D2_DP(x1, x0, x0r, x0i); \
  137. PCKEVOD_D2_DP(x3, x2, x1r, x1i); \
  138. #define ZLOAD_X2_VECTOR() \
  139. LD_DP2(x, 2, x0, x1); \
  140. PCKEVOD_D2_DP(x1, x0, x0r, x0i); \
  141. #define ZLOAD_X8_GP() \
  142. x0r = (v2f64) __msa_insert_d((v2i64) tp0r, 0, *((long long *) (x + 0 * inc_x2))); \
  143. x0r = (v2f64) __msa_insert_d((v2i64) x0r, 1, *((long long *) (x + 1 * inc_x2))); \
  144. x1r = (v2f64) __msa_insert_d((v2i64) tp0r, 0, *((long long *) (x + 2 * inc_x2))); \
  145. x1r = (v2f64) __msa_insert_d((v2i64) x1r, 1, *((long long *) (x + 3 * inc_x2))); \
  146. x2r = (v2f64) __msa_insert_d((v2i64) tp0r, 0, *((long long *) (x + 4 * inc_x2))); \
  147. x2r = (v2f64) __msa_insert_d((v2i64) x2r, 1, *((long long *) (x + 5 * inc_x2))); \
  148. x3r = (v2f64) __msa_insert_d((v2i64) tp0r, 0, *((long long *) (x + 6 * inc_x2))); \
  149. x3r = (v2f64) __msa_insert_d((v2i64) x3r, 1, *((long long *) (x + 7 * inc_x2))); \
  150. x0i = (v2f64) __msa_insert_d((v2i64) tp0r, 0, *((long long *) (x + 0 * inc_x2 + 1))); \
  151. x0i = (v2f64) __msa_insert_d((v2i64) x0i, 1, *((long long *) (x + 1 * inc_x2 + 1))); \
  152. x1i = (v2f64) __msa_insert_d((v2i64) tp0r, 0, *((long long *) (x + 2 * inc_x2 + 1))); \
  153. x1i = (v2f64) __msa_insert_d((v2i64) x1i, 1, *((long long *) (x + 3 * inc_x2 + 1))); \
  154. x2i = (v2f64) __msa_insert_d((v2i64) tp0r, 0, *((long long *) (x + 4 * inc_x2 + 1))); \
  155. x2i = (v2f64) __msa_insert_d((v2i64) x2i, 1, *((long long *) (x + 5 * inc_x2 + 1))); \
  156. x3i = (v2f64) __msa_insert_d((v2i64) tp0r, 0, *((long long *) (x + 6 * inc_x2 + 1))); \
  157. x3i = (v2f64) __msa_insert_d((v2i64) x3i, 1, *((long long *) (x + 7 * inc_x2 + 1))); \
  158. #define ZLOAD_X4_GP() \
  159. x0r = (v2f64) __msa_insert_d((v2i64) tp0r, 0, *((long long *) (x + 0 * inc_x2))); \
  160. x0r = (v2f64) __msa_insert_d((v2i64) x0r, 1, *((long long *) (x + 1 * inc_x2))); \
  161. x1r = (v2f64) __msa_insert_d((v2i64) tp0r, 0, *((long long *) (x + 2 * inc_x2))); \
  162. x1r = (v2f64) __msa_insert_d((v2i64) x1r, 1, *((long long *) (x + 3 * inc_x2))); \
  163. x0i = (v2f64) __msa_insert_d((v2i64) tp0r, 0, *((long long *) (x + 0 * inc_x2 + 1))); \
  164. x0i = (v2f64) __msa_insert_d((v2i64) x0i, 1, *((long long *) (x + 1 * inc_x2 + 1))); \
  165. x1i = (v2f64) __msa_insert_d((v2i64) tp0r, 0, *((long long *) (x + 2 * inc_x2 + 1))); \
  166. x1i = (v2f64) __msa_insert_d((v2i64) x1i, 1, *((long long *) (x + 3 * inc_x2 + 1))); \
  167. #define ZLOAD_X2_GP() \
  168. x0r = (v2f64) __msa_insert_d((v2i64) tp0r, 0, *((long long *) (x + 0 * inc_x2))); \
  169. x0r = (v2f64) __msa_insert_d((v2i64) x0r, 1, *((long long *) (x + 1 * inc_x2))); \
  170. x0i = (v2f64) __msa_insert_d((v2i64) tp0r, 0, *((long long *) (x + 0 * inc_x2 + 1))); \
  171. x0i = (v2f64) __msa_insert_d((v2i64) x0i, 1, *((long long *) (x + 1 * inc_x2 + 1))); \
  172. #define ZGEMV_T_MSA() \
  173. for (j = n; j--;) \
  174. { \
  175. tp0r = zero; \
  176. tp0i = zero; \
  177. tp1r = zero; \
  178. tp1i = zero; \
  179. tp2r = zero; \
  180. tp2i = zero; \
  181. tp3r = zero; \
  182. tp3i = zero; \
  183. \
  184. pa0 = A; \
  185. x = srcx_org; \
  186. \
  187. if (m >> 4) \
  188. { \
  189. x0 = LD_DP(x); \
  190. x1 = LD_DP(x + 1 * inc_x2); \
  191. t0 = LD_DP(pa0); \
  192. t1 = LD_DP(pa0 + 2); \
  193. \
  194. x4 = LD_DP(x + 4 * inc_x2); \
  195. x5 = LD_DP(x + 5 * inc_x2); \
  196. t4 = LD_DP(pa0 + 8); \
  197. t5 = LD_DP(pa0 + 10); \
  198. \
  199. for (i = (m >> 4) - 1; i--;) \
  200. { \
  201. pa0_pref = pa0 + pref_offset; \
  202. \
  203. PREFETCH(pa0_pref + 36); \
  204. PREFETCH(pa0_pref + 44); \
  205. PREFETCH(pa0_pref + 48); \
  206. PREFETCH(pa0_pref + 52); \
  207. PREFETCH(pa0_pref + 56); \
  208. PREFETCH(pa0_pref + 60); \
  209. PREFETCH(pa0_pref + 64); \
  210. PREFETCH(pa0_pref + 72); \
  211. \
  212. x0r = (v2f64) __msa_pckev_d((v2i64) x1, (v2i64) x0); \
  213. x0i = (v2f64) __msa_pckod_d((v2i64) x1, (v2i64) x0); \
  214. src0r = (v2f64) __msa_pckev_d((v2i64) t1, (v2i64) t0); \
  215. src0i = (v2f64) __msa_pckod_d((v2i64) t1, (v2i64) t0); \
  216. \
  217. tp0r += src0r * x0r; \
  218. x2 = LD_DP(x + 2 * inc_x2); \
  219. x2r = (v2f64) __msa_pckev_d((v2i64) x5, (v2i64) x4); \
  220. \
  221. tp0i OP1 src0r * x0i; \
  222. x3 = LD_DP(x + 3 * inc_x2); \
  223. x2i = (v2f64) __msa_pckod_d((v2i64) x5, (v2i64) x4); \
  224. \
  225. tp1r OP0 src0i * x0i; \
  226. t2 = LD_DP(pa0 + 4); \
  227. src2r = (v2f64) __msa_pckev_d((v2i64) t5, (v2i64) t4); \
  228. \
  229. tp1i OP2 src0i * x0r; \
  230. t3 = LD_DP(pa0 + 6); \
  231. src2i = (v2f64) __msa_pckod_d((v2i64) t5, (v2i64) t4); \
  232. \
  233. tp2r += src2r * x2r; \
  234. x6 = LD_DP(x + 6 * inc_x2); \
  235. \
  236. tp2i OP1 src2r * x2i; \
  237. x7 = LD_DP(x + 7 * inc_x2); \
  238. \
  239. tp3r OP0 src2i * x2i; \
  240. t6 = LD_DP(pa0 + 12); \
  241. \
  242. tp3i OP2 src2i * x2r; \
  243. t7 = LD_DP(pa0 + 14); \
  244. \
  245. x1r = (v2f64) __msa_pckev_d((v2i64) x3, (v2i64) x2); \
  246. x1i = (v2f64) __msa_pckod_d((v2i64) x3, (v2i64) x2); \
  247. src1r = (v2f64) __msa_pckev_d((v2i64) t3, (v2i64) t2); \
  248. src1i = (v2f64) __msa_pckod_d((v2i64) t3, (v2i64) t2); \
  249. \
  250. tp0r += src1r * x1r; \
  251. x0 = LD_DP(x + 8 * inc_x2); \
  252. x3r = (v2f64) __msa_pckev_d((v2i64) x7, (v2i64) x6); \
  253. \
  254. tp0i OP1 src1r * x1i; \
  255. x1 = LD_DP(x + 9 * inc_x2); \
  256. x3i = (v2f64) __msa_pckod_d((v2i64) x7, (v2i64) x6); \
  257. \
  258. tp1r OP0 src1i * x1i; \
  259. t0 = LD_DP(pa0 + 16); \
  260. src3r = (v2f64) __msa_pckev_d((v2i64) t7, (v2i64) t6); \
  261. \
  262. tp1i OP2 src1i * x1r; \
  263. t1 = LD_DP(pa0 + 18); \
  264. src3i = (v2f64) __msa_pckod_d((v2i64) t7, (v2i64) t6); \
  265. \
  266. tp2r += src3r * x3r; \
  267. x4 = LD_DP(x + 12 * inc_x2); \
  268. \
  269. tp2i OP1 src3r * x3i; \
  270. x5 = LD_DP(x + 13 * inc_x2); \
  271. \
  272. tp3r OP0 src3i * x3i; \
  273. t4 = LD_DP(pa0 + 24); \
  274. \
  275. tp3i OP2 src3i * x3r; \
  276. t5 = LD_DP(pa0 + 26); \
  277. \
  278. x0r = (v2f64) __msa_pckev_d((v2i64) x1, (v2i64) x0); \
  279. x0i = (v2f64) __msa_pckod_d((v2i64) x1, (v2i64) x0); \
  280. src0r = (v2f64) __msa_pckev_d((v2i64) t1, (v2i64) t0); \
  281. src0i = (v2f64) __msa_pckod_d((v2i64) t1, (v2i64) t0); \
  282. \
  283. tp0r += src0r * x0r; \
  284. x2 = LD_DP(x + 10 * inc_x2); \
  285. x2r = (v2f64) __msa_pckev_d((v2i64) x5, (v2i64) x4); \
  286. \
  287. tp0i OP1 src0r * x0i; \
  288. x3 = LD_DP(x + 11 * inc_x2); \
  289. x2i = (v2f64) __msa_pckod_d((v2i64) x5, (v2i64) x4); \
  290. \
  291. tp1r OP0 src0i * x0i; \
  292. t2 = LD_DP(pa0 + 20); \
  293. src2r = (v2f64) __msa_pckev_d((v2i64) t5, (v2i64) t4); \
  294. \
  295. tp1i OP2 src0i * x0r; \
  296. t3 = LD_DP(pa0 + 22); \
  297. src2i = (v2f64) __msa_pckod_d((v2i64) t5, (v2i64) t4); \
  298. \
  299. tp2r += src2r * x2r; \
  300. x6 = LD_DP(x + 14 * inc_x2); \
  301. \
  302. tp2i OP1 src2r * x2i; \
  303. x7 = LD_DP(x + 15 * inc_x2); \
  304. \
  305. tp3r OP0 src2i * x2i; \
  306. t6 = LD_DP(pa0 + 28); \
  307. \
  308. tp3i OP2 src2i * x2r; \
  309. t7 = LD_DP(pa0 + 30); \
  310. \
  311. x1r = (v2f64) __msa_pckev_d((v2i64) x3, (v2i64) x2); \
  312. x1i = (v2f64) __msa_pckod_d((v2i64) x3, (v2i64) x2); \
  313. src1r = (v2f64) __msa_pckev_d((v2i64) t3, (v2i64) t2); \
  314. src1i = (v2f64) __msa_pckod_d((v2i64) t3, (v2i64) t2); \
  315. \
  316. tp0r += src1r * x1r; \
  317. x0 = LD_DP(x + inc_x2 * 16); \
  318. x3r = (v2f64) __msa_pckev_d((v2i64) x7, (v2i64) x6); \
  319. \
  320. tp0i OP1 src1r * x1i; \
  321. x1 = LD_DP(x + inc_x2 * 16 + 1 * inc_x2); \
  322. x3i = (v2f64) __msa_pckod_d((v2i64) x7, (v2i64) x6); \
  323. \
  324. tp1r OP0 src1i * x1i; \
  325. t0 = LD_DP(pa0 + 2 * 16); \
  326. src3r = (v2f64) __msa_pckev_d((v2i64) t7, (v2i64) t6); \
  327. \
  328. tp1i OP2 src1i * x1r; \
  329. t1 = LD_DP(pa0 + 2 * 16 + 2); \
  330. src3i = (v2f64) __msa_pckod_d((v2i64) t7, (v2i64) t6); \
  331. \
  332. tp2r += src3r * x3r; \
  333. x4 = LD_DP(x + inc_x2 * 16 + 4 * inc_x2); \
  334. \
  335. tp2i OP1 src3r * x3i; \
  336. x5 = LD_DP(x + inc_x2 * 16 + 5 * inc_x2); \
  337. \
  338. tp3r OP0 src3i * x3i; \
  339. t4 = LD_DP(pa0 + 2 * 16 + 8); \
  340. \
  341. tp3i OP2 src3i * x3r; \
  342. t5 = LD_DP(pa0 + 2 * 16 + 10); \
  343. \
  344. pa0 += 2 * 16; \
  345. x += inc_x2 * 16; \
  346. } \
  347. \
  348. x0r = (v2f64) __msa_pckev_d((v2i64) x1, (v2i64) x0); \
  349. x0i = (v2f64) __msa_pckod_d((v2i64) x1, (v2i64) x0); \
  350. src0r = (v2f64) __msa_pckev_d((v2i64) t1, (v2i64) t0); \
  351. src0i = (v2f64) __msa_pckod_d((v2i64) t1, (v2i64) t0); \
  352. \
  353. tp0r += src0r * x0r; \
  354. x2 = LD_DP(x + 2 * inc_x2); \
  355. x2r = (v2f64) __msa_pckev_d((v2i64) x5, (v2i64) x4); \
  356. \
  357. tp0i OP1 src0r * x0i; \
  358. x3 = LD_DP(x + 3 * inc_x2); \
  359. x2i = (v2f64) __msa_pckod_d((v2i64) x5, (v2i64) x4); \
  360. \
  361. tp1r OP0 src0i * x0i; \
  362. t2 = LD_DP(pa0 + 4); \
  363. src2r = (v2f64) __msa_pckev_d((v2i64) t5, (v2i64) t4); \
  364. \
  365. tp1i OP2 src0i * x0r; \
  366. t3 = LD_DP(pa0 + 6); \
  367. src2i = (v2f64) __msa_pckod_d((v2i64) t5, (v2i64) t4); \
  368. \
  369. tp2r += src2r * x2r; \
  370. x6 = LD_DP(x + 6 * inc_x2); \
  371. \
  372. tp2i OP1 src2r * x2i; \
  373. x7 = LD_DP(x + 7 * inc_x2); \
  374. \
  375. tp3r OP0 src2i * x2i; \
  376. t6 = LD_DP(pa0 + 12); \
  377. \
  378. tp3i OP2 src2i * x2r; \
  379. t7 = LD_DP(pa0 + 14); \
  380. \
  381. x1r = (v2f64) __msa_pckev_d((v2i64) x3, (v2i64) x2); \
  382. x1i = (v2f64) __msa_pckod_d((v2i64) x3, (v2i64) x2); \
  383. src1r = (v2f64) __msa_pckev_d((v2i64) t3, (v2i64) t2); \
  384. src1i = (v2f64) __msa_pckod_d((v2i64) t3, (v2i64) t2); \
  385. \
  386. tp0r += src1r * x1r; \
  387. x0 = LD_DP(x + 8 * inc_x2); \
  388. x3r = (v2f64) __msa_pckev_d((v2i64) x7, (v2i64) x6); \
  389. \
  390. tp0i OP1 src1r * x1i; \
  391. x1 = LD_DP(x + 9 * inc_x2); \
  392. x3i = (v2f64) __msa_pckod_d((v2i64) x7, (v2i64) x6); \
  393. \
  394. tp1r OP0 src1i * x1i; \
  395. t0 = LD_DP(pa0 + 16); \
  396. src3r = (v2f64) __msa_pckev_d((v2i64) t7, (v2i64) t6); \
  397. \
  398. tp1i OP2 src1i * x1r; \
  399. t1 = LD_DP(pa0 + 18); \
  400. src3i = (v2f64) __msa_pckod_d((v2i64) t7, (v2i64) t6); \
  401. \
  402. tp2r += src3r * x3r; \
  403. x4 = LD_DP(x + 12 * inc_x2); \
  404. \
  405. tp2i OP1 src3r * x3i; \
  406. x5 = LD_DP(x + 13 * inc_x2); \
  407. \
  408. tp3r OP0 src3i * x3i; \
  409. t4 = LD_DP(pa0 + 24); \
  410. \
  411. tp3i OP2 src3i * x3r; \
  412. t5 = LD_DP(pa0 + 26); \
  413. \
  414. x0r = (v2f64) __msa_pckev_d((v2i64) x1, (v2i64) x0); \
  415. x0i = (v2f64) __msa_pckod_d((v2i64) x1, (v2i64) x0); \
  416. src0r = (v2f64) __msa_pckev_d((v2i64) t1, (v2i64) t0); \
  417. src0i = (v2f64) __msa_pckod_d((v2i64) t1, (v2i64) t0); \
  418. \
  419. tp0r += src0r * x0r; \
  420. x2 = LD_DP(x + 10 * inc_x2); \
  421. x2r = (v2f64) __msa_pckev_d((v2i64) x5, (v2i64) x4); \
  422. \
  423. tp0i OP1 src0r * x0i; \
  424. x3 = LD_DP(x + 11 * inc_x2); \
  425. x2i = (v2f64) __msa_pckod_d((v2i64) x5, (v2i64) x4); \
  426. \
  427. tp1r OP0 src0i * x0i; \
  428. t2 = LD_DP(pa0 + 20); \
  429. src2r = (v2f64) __msa_pckev_d((v2i64) t5, (v2i64) t4); \
  430. \
  431. tp1i OP2 src0i * x0r; \
  432. t3 = LD_DP(pa0 + 22); \
  433. src2i = (v2f64) __msa_pckod_d((v2i64) t5, (v2i64) t4); \
  434. \
  435. tp2r += src2r * x2r; \
  436. x6 = LD_DP(x + 14 * inc_x2); \
  437. \
  438. tp2i OP1 src2r * x2i; \
  439. x7 = LD_DP(x + 15 * inc_x2); \
  440. \
  441. tp3r OP0 src2i * x2i; \
  442. t6 = LD_DP(pa0 + 28); \
  443. \
  444. tp3i OP2 src2i * x2r; \
  445. t7 = LD_DP(pa0 + 30); \
  446. \
  447. x1r = (v2f64) __msa_pckev_d((v2i64) x3, (v2i64) x2); \
  448. x1i = (v2f64) __msa_pckod_d((v2i64) x3, (v2i64) x2); \
  449. src1r = (v2f64) __msa_pckev_d((v2i64) t3, (v2i64) t2); \
  450. src1i = (v2f64) __msa_pckod_d((v2i64) t3, (v2i64) t2); \
  451. \
  452. tp0r += src1r * x1r; \
  453. x3r = (v2f64) __msa_pckev_d((v2i64) x7, (v2i64) x6); \
  454. \
  455. tp0i OP1 src1r * x1i; \
  456. x3i = (v2f64) __msa_pckod_d((v2i64) x7, (v2i64) x6); \
  457. \
  458. tp1r OP0 src1i * x1i; \
  459. src3r = (v2f64) __msa_pckev_d((v2i64) t7, (v2i64) t6); \
  460. \
  461. tp1i OP2 src1i * x1r; \
  462. src3i = (v2f64) __msa_pckod_d((v2i64) t7, (v2i64) t6); \
  463. \
  464. tp2r += src3r * x3r; \
  465. tp2i OP1 src3r * x3i; \
  466. tp3r OP0 src3i * x3i; \
  467. tp3i OP2 src3i * x3r; \
  468. \
  469. pa0 += 2 * 16; \
  470. x += inc_x2 * 16; \
  471. \
  472. tp0r += tp1r + tp2r + tp3r; \
  473. tp0i += tp1i + tp2i + tp3i; \
  474. } \
  475. \
  476. if (m & 8) \
  477. { \
  478. ZLOAD_X8(); \
  479. ZGEMV_T_8x1(); \
  480. \
  481. pa0 += 2 * 8; \
  482. x += inc_x2 * 8; \
  483. } \
  484. \
  485. if (m & 4) \
  486. { \
  487. ZLOAD_X4(); \
  488. ZGEMV_T_4x1(); \
  489. \
  490. pa0 += 2 * 4; \
  491. x += inc_x2 * 4; \
  492. } \
  493. \
  494. if (m & 2) \
  495. { \
  496. ZLOAD_X2(); \
  497. ZGEMV_T_2x1(); \
  498. \
  499. pa0 += 2 * 2; \
  500. x += inc_x2 * 2; \
  501. } \
  502. \
  503. temp0r = tp0r[0] + tp0r[1]; \
  504. temp0i = tp0i[0] + tp0i[1]; \
  505. \
  506. if (m & 1) \
  507. { \
  508. ZGEMV_T_1x1(); \
  509. \
  510. pa0 += 2; \
  511. x += inc_x2; \
  512. } \
  513. \
  514. ZSCALE_STORE_Y1_GP(); \
  515. \
  516. A += lda2; \
  517. y += inc_y2; \
  518. } \
  519. int CNAME(BLASLONG m, BLASLONG n, BLASLONG dummy1, FLOAT alphar, FLOAT alphai,
  520. FLOAT *A, BLASLONG lda, FLOAT *x, BLASLONG inc_x, FLOAT *y,
  521. BLASLONG inc_y, FLOAT *buffer)
  522. {
  523. BLASLONG i, j, pref_offset;
  524. BLASLONG inc_x2, inc_y2, lda2;
  525. FLOAT *pa0, *pa0_pref;
  526. FLOAT *srcx_org = x;
  527. FLOAT temp0r, temp0i;
  528. FLOAT res0r, res0i;
  529. v2f64 zero = {0};
  530. v2f64 x0, x1, x2, x3, x0r, x1r, x0i, x1i;
  531. v2f64 x4, x5, x6, x7, x2r, x3r, x2i, x3i;
  532. v2f64 t0, t1, t2, t3, t4, t5, t6, t7;
  533. v2f64 src0r, src1r, src2r, src3r;
  534. v2f64 src0i, src1i, src2i, src3i;
  535. v2f64 tp0r, tp1r, tp2r, tp3r, tp0i, tp1i, tp2i, tp3i;
  536. lda2 = 2 * lda;
  537. inc_x2 = 2 * inc_x;
  538. inc_y2 = 2 * inc_y;
  539. pref_offset = (uintptr_t)A & L1_DATA_LINESIZE;
  540. pref_offset = L1_DATA_LINESIZE - pref_offset;
  541. pref_offset = pref_offset / sizeof(FLOAT);
  542. if (2 == inc_x2)
  543. {
  544. #define ZLOAD_X8 ZLOAD_X8_VECTOR
  545. #define ZLOAD_X4 ZLOAD_X4_VECTOR
  546. #define ZLOAD_X2 ZLOAD_X2_VECTOR
  547. ZGEMV_T_MSA();
  548. #undef ZLOAD_X8
  549. #undef ZLOAD_X4
  550. #undef ZLOAD_X2
  551. }
  552. else
  553. {
  554. #define ZLOAD_X8 ZLOAD_X8_GP
  555. #define ZLOAD_X4 ZLOAD_X4_GP
  556. #define ZLOAD_X2 ZLOAD_X2_GP
  557. ZGEMV_T_MSA();
  558. #undef ZLOAD_X8
  559. #undef ZLOAD_X4
  560. #undef ZLOAD_X2
  561. }
  562. return(0);
  563. }
  564. #undef OP0
  565. #undef OP1
  566. #undef OP2