You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

potrf_parallel.c 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #include <stdio.h>
  39. #include "common.h"
  40. #ifndef USE_SIMPLE_THREADED_LEVEL3
  41. //The array of job_t may overflow the stack.
  42. //Instead, use malloc to alloc job_t.
  43. #if MAX_CPU_NUMBER > BLAS3_MEM_ALLOC_THRESHOLD
  44. #define USE_ALLOC_HEAP
  45. #endif
  46. static FLOAT dm1 = -1.;
  47. #ifndef KERNEL_FUNC
  48. #ifndef LOWER
  49. #define KERNEL_FUNC SYRK_KERNEL_U
  50. #else
  51. #define KERNEL_FUNC SYRK_KERNEL_L
  52. #endif
  53. #endif
  54. #ifndef LOWER
  55. #ifndef COMPLEX
  56. #define TRSM_KERNEL TRSM_KERNEL_LT
  57. #else
  58. #define TRSM_KERNEL TRSM_KERNEL_LC
  59. #endif
  60. #else
  61. #ifndef COMPLEX
  62. #define TRSM_KERNEL TRSM_KERNEL_RN
  63. #else
  64. #define TRSM_KERNEL TRSM_KERNEL_RR
  65. #endif
  66. #endif
  67. #ifndef CACHE_LINE_SIZE
  68. #define CACHE_LINE_SIZE 8
  69. #endif
  70. #ifndef DIVIDE_RATE
  71. #define DIVIDE_RATE 2
  72. #endif
  73. #ifndef LOWER
  74. #define TRANS
  75. #endif
  76. #ifndef SYRK_LOCAL
  77. #if !defined(LOWER) && !defined(TRANS)
  78. #define SYRK_LOCAL SYRK_UN
  79. #elif !defined(LOWER) && defined(TRANS)
  80. #define SYRK_LOCAL SYRK_UT
  81. #elif defined(LOWER) && !defined(TRANS)
  82. #define SYRK_LOCAL SYRK_LN
  83. #else
  84. #define SYRK_LOCAL SYRK_LT
  85. #endif
  86. #endif
  87. typedef struct {
  88. #ifdef HAVE_C11
  89. _Atomic
  90. #else
  91. volatile
  92. #endif
  93. BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE];
  94. } job_t;
  95. #ifdef HAVE_C11
  96. #define atomic_load_long(p) __atomic_load_n(p, __ATOMIC_RELAXED)
  97. #define atomic_store_long(p, v) __atomic_store_n(p, v, __ATOMIC_RELAXED)
  98. #else
  99. #define atomic_load_long(p) (BLASLONG)(*(volatile BLASLONG*)(p))
  100. #define atomic_store_long(p, v) (*(volatile BLASLONG *)(p)) = (v)
  101. #endif
  102. #ifndef KERNEL_OPERATION
  103. #ifndef COMPLEX
  104. #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
  105. KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y))
  106. #else
  107. #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
  108. KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y))
  109. #endif
  110. #endif
  111. #ifndef ICOPY_OPERATION
  112. #ifndef TRANS
  113. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  114. #else
  115. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  116. #endif
  117. #endif
  118. #ifndef OCOPY_OPERATION
  119. #ifdef TRANS
  120. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  121. #else
  122. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  123. #endif
  124. #endif
  125. #ifndef S
  126. #define S args -> a
  127. #endif
  128. #ifndef A
  129. #define A args -> b
  130. #endif
  131. #ifndef C
  132. #define C args -> c
  133. #endif
  134. #ifndef LDA
  135. #define LDA args -> lda
  136. #endif
  137. #ifndef N
  138. #define N args -> m
  139. #endif
  140. #ifndef K
  141. #define K args -> k
  142. #endif
  143. static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  144. FLOAT *buffer[DIVIDE_RATE];
  145. BLASLONG k, lda;
  146. BLASLONG m_from, m_to;
  147. FLOAT *alpha;
  148. FLOAT *a, *c;
  149. job_t *job = (job_t *)args -> common;
  150. BLASLONG xxx, bufferside;
  151. BLASLONG jjs, min_jj;
  152. BLASLONG is, min_i, div_n;
  153. BLASLONG i, current;
  154. k = K;
  155. a = (FLOAT *)A;
  156. c = (FLOAT *)C;
  157. lda = LDA;
  158. alpha = (FLOAT *)args -> alpha;
  159. m_from = range_n[mypos + 0];
  160. m_to = range_n[mypos + 1];
  161. #if 0
  162. fprintf(stderr, "Thread[%ld] m_from : %ld m_to : %ld\n", mypos, m_from, m_to);
  163. #endif
  164. div_n = (((m_to - m_from + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  165. buffer[0] = (FLOAT *)((((BLASULONG)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  166. for (i = 1; i < DIVIDE_RATE; i++) {
  167. buffer[i] = buffer[i - 1] + GEMM_Q * div_n * COMPSIZE;
  168. }
  169. #ifndef LOWER
  170. TRSM_IUNCOPY(k, k, (FLOAT *)S, lda, 0, sb);
  171. #else
  172. TRSM_OLTCOPY(k, k, (FLOAT *)S, lda, 0, sb);
  173. #endif
  174. for (xxx = m_from, bufferside = 0; xxx < m_to; xxx += div_n, bufferside ++) {
  175. for(jjs = xxx; jjs < MIN(m_to, xxx + div_n); jjs += min_jj){
  176. min_jj = MIN(m_to, xxx + div_n) - jjs;
  177. #ifndef LOWER
  178. if (min_jj > GEMM_UNROLL_MN) min_jj = GEMM_UNROLL_MN;
  179. #else
  180. if (min_jj > GEMM_P) min_jj = GEMM_P;
  181. #endif
  182. #ifndef LOWER
  183. OCOPY_OPERATION (k, min_jj, a, lda, 0, jjs, buffer[bufferside] + k * (jjs - xxx) * COMPSIZE);
  184. TRSM_KERNEL (k, min_jj, k, dm1,
  185. #ifdef COMPLEX
  186. ZERO,
  187. #endif
  188. sb,
  189. buffer[bufferside] + k * (jjs - xxx) * COMPSIZE,
  190. a + jjs * lda * COMPSIZE, lda, 0);
  191. #else
  192. ICOPY_OPERATION (k, min_jj, a, lda, 0, jjs, buffer[bufferside] + k * (jjs - xxx) * COMPSIZE);
  193. TRSM_KERNEL (min_jj, k, k, dm1,
  194. #ifdef COMPLEX
  195. ZERO,
  196. #endif
  197. buffer[bufferside] + k * (jjs - xxx) * COMPSIZE,
  198. sb,
  199. a + jjs * COMPSIZE, lda, 0);
  200. #endif
  201. }
  202. #ifndef LOWER
  203. MB;
  204. for (i = 0; i <= mypos; i++)
  205. atomic_store_long(&job[mypos].working[i][CACHE_LINE_SIZE * bufferside], (BLASLONG)buffer[bufferside]);
  206. // job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
  207. #else
  208. MB
  209. for (i = mypos; i < args -> nthreads; i++)
  210. atomic_store_long(&job[mypos].working[i][CACHE_LINE_SIZE * bufferside], (BLASLONG)buffer[bufferside]);
  211. // job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
  212. #endif
  213. // WMB;
  214. }
  215. min_i = m_to - m_from;
  216. if (min_i >= GEMM_P * 2) {
  217. min_i = GEMM_P;
  218. } else
  219. if (min_i > GEMM_P) {
  220. min_i = (((min_i + 1) / 2 + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  221. }
  222. #ifndef LOWER
  223. ICOPY_OPERATION(k, min_i, a, lda, 0, m_from, sa);
  224. #else
  225. OCOPY_OPERATION(k, min_i, a, lda, 0, m_from, sa);
  226. #endif
  227. current = mypos;
  228. #ifndef LOWER
  229. while (current < args -> nthreads)
  230. #else
  231. while (current >= 0)
  232. #endif
  233. {
  234. div_n = (((range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  235. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  236. /* thread has to wait */
  237. if (current != mypos)
  238. do {
  239. jw = atomic_load_long(&job[current].working[mypos][CACHE_LINE_SIZE * bufferside]);
  240. } while (jw == 0);
  241. MB;
  242. //while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {YIELDING;};
  243. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k, alpha,
  244. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  245. c, lda, m_from, xxx);
  246. if (m_from + min_i >= m_to) {
  247. atomic_store_long(&job[current].working[mypos][CACHE_LINE_SIZE * bufferside], job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0);
  248. // job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
  249. WMB;
  250. }
  251. }
  252. #ifndef LOWER
  253. current ++;
  254. #else
  255. current --;
  256. #endif
  257. }
  258. for(is = m_from + min_i; is < m_to; is += min_i){
  259. min_i = m_to - is;
  260. if (min_i >= GEMM_P * 2) {
  261. min_i = GEMM_P;
  262. } else
  263. if (min_i > GEMM_P) {
  264. min_i = (((min_i + 1) / 2 + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  265. }
  266. #ifndef LOWER
  267. ICOPY_OPERATION(k, min_i, a, lda, 0, is, sa);
  268. #else
  269. OCOPY_OPERATION(k, min_i, a, lda, 0, is, sa);
  270. #endif
  271. current = mypos;
  272. #ifndef LOWER
  273. while (current < args -> nthreads)
  274. #else
  275. while (current >= 0)
  276. #endif
  277. {
  278. div_n = (((range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  279. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  280. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k, alpha,
  281. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  282. c, lda, is, xxx);
  283. if (is + min_i >= m_to) {
  284. atomic_store_long(&job[current].working[mypos][CACHE_LINE_SIZE * bufferside], job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0);
  285. // job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
  286. WMB;
  287. }
  288. }
  289. #ifndef LOWER
  290. current ++;
  291. #else
  292. current --;
  293. #endif
  294. }
  295. }
  296. for (i = 0; i < args -> nthreads; i++) {
  297. if (i != mypos) {
  298. for (xxx = 0; xxx < DIVIDE_RATE; xxx++)
  299. #if 1
  300. {
  301. do {
  302. jw = atomic_load_long(&job[mypos].working[i][CACHE_LINE_SIZE * xxx]);
  303. } while (jw);
  304. MB;
  305. }
  306. #else
  307. while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {YIELDING;};
  308. #endif
  309. // }
  310. }
  311. }
  312. return 0;
  313. }
  314. static int thread_driver(blas_arg_t *args, FLOAT *sa, FLOAT *sb){
  315. blas_arg_t newarg;
  316. #ifndef USE_ALLOC_HEAP
  317. job_t job[MAX_CPU_NUMBER];
  318. #else
  319. job_t * job = NULL;
  320. #endif
  321. blas_queue_t queue[MAX_CPU_NUMBER];
  322. BLASLONG range[MAX_CPU_NUMBER + 100];
  323. BLASLONG num_cpu;
  324. BLASLONG nthreads = args -> nthreads;
  325. BLASLONG width, i, j, k;
  326. BLASLONG n, n_from, n_to;
  327. int mode, mask;
  328. double dnum;
  329. #ifndef COMPLEX
  330. #ifdef XDOUBLE
  331. mode = BLAS_XDOUBLE | BLAS_REAL;
  332. mask = MAX(QGEMM_UNROLL_M, QGEMM_UNROLL_N) - 1;
  333. #elif defined(DOUBLE)
  334. mode = BLAS_DOUBLE | BLAS_REAL;
  335. mask = MAX(DGEMM_UNROLL_M, DGEMM_UNROLL_N) - 1;
  336. #elif defined(HALF)
  337. mode = BLAS_HALF | BLAS_REAL;
  338. mask = MAX(SBGEMM_UNROLL_M, SBGEMM_UNROLL_N) - 1;
  339. #else
  340. mode = BLAS_SINGLE | BLAS_REAL;
  341. mask = MAX(SGEMM_UNROLL_M, SGEMM_UNROLL_N) - 1;
  342. #endif
  343. #else
  344. #ifdef XDOUBLE
  345. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  346. mask = MAX(XGEMM_UNROLL_M, XGEMM_UNROLL_N) - 1;
  347. #elif defined(DOUBLE)
  348. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  349. mask = MAX(ZGEMM_UNROLL_M, ZGEMM_UNROLL_N) - 1;
  350. #else
  351. mode = BLAS_SINGLE | BLAS_COMPLEX;
  352. mask = MAX(CGEMM_UNROLL_M, CGEMM_UNROLL_N) - 1;
  353. #endif
  354. #endif
  355. newarg.m = args -> m;
  356. newarg.k = args -> k;
  357. newarg.a = args -> a;
  358. newarg.b = args -> b;
  359. newarg.c = args -> c;
  360. newarg.lda = args -> lda;
  361. newarg.alpha = args -> alpha;
  362. #ifdef USE_ALLOC_HEAP
  363. job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t));
  364. if(job==NULL){
  365. fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__);
  366. exit(1);
  367. }
  368. #endif
  369. newarg.common = (void *)job;
  370. n_from = 0;
  371. n_to = args -> m;
  372. #ifndef LOWER
  373. range[MAX_CPU_NUMBER] = n_to - n_from;
  374. range[0] = 0;
  375. num_cpu = 0;
  376. i = 0;
  377. n = n_to - n_from;
  378. dnum = (double)n * (double)n /(double)nthreads;
  379. while (i < n){
  380. if (nthreads - num_cpu > 1) {
  381. double di = (double)i;
  382. width = ((((BLASLONG)(sqrt(di * di + dnum) - di) + mask)/(mask+1)) * (mask+1));
  383. if (num_cpu == 0) width = n - (((n - width)/(mask+1)) * (mask+1));
  384. if ((width > n - i) || (width < mask)) width = n - i;
  385. } else {
  386. width = n - i;
  387. }
  388. range[MAX_CPU_NUMBER - num_cpu - 1] = range[MAX_CPU_NUMBER - num_cpu] - width;
  389. queue[num_cpu].mode = mode;
  390. queue[num_cpu].routine = inner_thread;
  391. queue[num_cpu].args = &newarg;
  392. queue[num_cpu].range_m = NULL;
  393. queue[num_cpu].sa = NULL;
  394. queue[num_cpu].sb = NULL;
  395. queue[num_cpu].next = &queue[num_cpu + 1];
  396. num_cpu ++;
  397. i += width;
  398. }
  399. for (i = 0; i < num_cpu; i ++) queue[i].range_n = &range[MAX_CPU_NUMBER - num_cpu];
  400. #else
  401. range[0] = 0;
  402. num_cpu = 0;
  403. i = 0;
  404. n = n_to - n_from;
  405. dnum = (double)n * (double)n /(double)nthreads;
  406. while (i < n){
  407. if (nthreads - num_cpu > 1) {
  408. double di = (double)i;
  409. width = ((((BLASLONG)(sqrt(di * di + dnum) - di) + mask)/(mask+1)) * (mask+1));
  410. if ((width > n - i) || (width < mask)) width = n - i;
  411. } else {
  412. width = n - i;
  413. }
  414. range[num_cpu + 1] = range[num_cpu] + width;
  415. queue[num_cpu].mode = mode;
  416. queue[num_cpu].routine = inner_thread;
  417. queue[num_cpu].args = &newarg;
  418. queue[num_cpu].range_m = NULL;
  419. queue[num_cpu].range_n = range;
  420. queue[num_cpu].sa = NULL;
  421. queue[num_cpu].sb = NULL;
  422. queue[num_cpu].next = &queue[num_cpu + 1];
  423. num_cpu ++;
  424. i += width;
  425. }
  426. #endif
  427. newarg.nthreads = num_cpu;
  428. if (num_cpu) {
  429. for (j = 0; j < num_cpu; j++) {
  430. for (i = 0; i < num_cpu; i++) {
  431. for (k = 0; k < DIVIDE_RATE; k++) {
  432. job[j].working[i][CACHE_LINE_SIZE * k] = 0;
  433. }
  434. }
  435. }
  436. queue[0].sa = sa;
  437. queue[0].sb = sb;
  438. queue[num_cpu - 1].next = NULL;
  439. exec_blas(num_cpu, queue);
  440. }
  441. #ifdef USE_ALLOC_HEAP
  442. free(job);
  443. #endif
  444. return 0;
  445. }
  446. #endif
  447. blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
  448. BLASLONG n, bk, i, blocking, lda;
  449. BLASLONG info;
  450. int mode;
  451. blas_arg_t newarg;
  452. FLOAT *a;
  453. FLOAT alpha[2] = { -ONE, ZERO};
  454. #ifndef COMPLEX
  455. #ifdef XDOUBLE
  456. mode = BLAS_XDOUBLE | BLAS_REAL;
  457. #elif defined(DOUBLE)
  458. mode = BLAS_DOUBLE | BLAS_REAL;
  459. #else
  460. mode = BLAS_SINGLE | BLAS_REAL;
  461. #endif
  462. #else
  463. #ifdef XDOUBLE
  464. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  465. #elif defined(DOUBLE)
  466. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  467. #else
  468. mode = BLAS_SINGLE | BLAS_COMPLEX;
  469. #endif
  470. #endif
  471. if (args -> nthreads == 1) {
  472. #ifndef LOWER
  473. info = POTRF_U_SINGLE(args, NULL, NULL, sa, sb, 0);
  474. #else
  475. info = POTRF_L_SINGLE(args, NULL, NULL, sa, sb, 0);
  476. #endif
  477. return info;
  478. }
  479. n = args -> n;
  480. a = (FLOAT *)args -> a;
  481. lda = args -> lda;
  482. if (range_n) n = range_n[1] - range_n[0];
  483. if (n <= GEMM_UNROLL_N * 2) {
  484. #ifndef LOWER
  485. info = POTRF_U_SINGLE(args, NULL, range_n, sa, sb, 0);
  486. #else
  487. info = POTRF_L_SINGLE(args, NULL, range_n, sa, sb, 0);
  488. #endif
  489. return info;
  490. }
  491. newarg.lda = lda;
  492. newarg.ldb = lda;
  493. newarg.ldc = lda;
  494. newarg.alpha = alpha;
  495. newarg.beta = NULL;
  496. newarg.nthreads = args -> nthreads;
  497. blocking = ((n / 2 + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  498. if (blocking > GEMM_Q) blocking = GEMM_Q;
  499. for (i = 0; i < n; i += blocking) {
  500. bk = n - i;
  501. if (bk > blocking) bk = blocking;
  502. newarg.m = bk;
  503. newarg.n = bk;
  504. newarg.a = a + (i + i * lda) * COMPSIZE;
  505. info = CNAME(&newarg, NULL, NULL, sa, sb, 0);
  506. if (info) return info + i;
  507. if (n - i - bk > 0) {
  508. #ifndef USE_SIMPLE_THREADED_LEVEL3
  509. newarg.m = n - i - bk;
  510. newarg.k = bk;
  511. #ifndef LOWER
  512. newarg.b = a + ( i + (i + bk) * lda) * COMPSIZE;
  513. #else
  514. newarg.b = a + ((i + bk) + i * lda) * COMPSIZE;
  515. #endif
  516. newarg.c = a + ((i + bk) + (i + bk) * lda) * COMPSIZE;
  517. thread_driver(&newarg, sa, sb);
  518. #else
  519. #ifndef LOWER
  520. newarg.m = bk;
  521. newarg.n = n - i - bk;
  522. newarg.a = a + (i + i * lda) * COMPSIZE;
  523. newarg.b = a + (i + (i + bk) * lda) * COMPSIZE;
  524. gemm_thread_n(mode | BLAS_TRANSA_T,
  525. &newarg, NULL, NULL, (void *)TRSM_LCUN, sa, sb, args -> nthreads);
  526. newarg.n = n - i - bk;
  527. newarg.k = bk;
  528. newarg.a = a + ( i + (i + bk) * lda) * COMPSIZE;
  529. newarg.c = a + ((i + bk) + (i + bk) * lda) * COMPSIZE;
  530. #if 0
  531. HERK_THREAD_UC(&newarg, NULL, NULL, sa, sb, 0);
  532. #else
  533. syrk_thread(mode | BLAS_TRANSA_N | BLAS_TRANSB_T,
  534. &newarg, NULL, NULL, (void *)HERK_UC, sa, sb, args -> nthreads);
  535. #endif
  536. #else
  537. newarg.m = n - i - bk;
  538. newarg.n = bk;
  539. newarg.a = a + (i + i * lda) * COMPSIZE;
  540. newarg.b = a + (i + bk + i * lda) * COMPSIZE;
  541. gemm_thread_m(mode | BLAS_RSIDE | BLAS_TRANSA_T | BLAS_UPLO,
  542. &newarg, NULL, NULL, (void *)TRSM_RCLN, sa, sb, args -> nthreads);
  543. newarg.n = n - i - bk;
  544. newarg.k = bk;
  545. newarg.a = a + (i + bk + i * lda) * COMPSIZE;
  546. newarg.c = a + (i + bk + (i + bk) * lda) * COMPSIZE;
  547. #if 0
  548. HERK_THREAD_LN(&newarg, NULL, NULL, sa, sb, 0);
  549. #else
  550. syrk_thread(mode | BLAS_TRANSA_N | BLAS_TRANSB_T | BLAS_UPLO,
  551. &newarg, NULL, NULL, (void *)HERK_LN, sa, sb, args -> nthreads);
  552. #endif
  553. #endif
  554. #endif
  555. }
  556. }
  557. return 0;
  558. }