You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

srqt01.f 6.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251
  1. *> \brief \b SRQT01
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE SRQT01( M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK,
  12. * RWORK, RESULT )
  13. *
  14. * .. Scalar Arguments ..
  15. * INTEGER LDA, LWORK, M, N
  16. * ..
  17. * .. Array Arguments ..
  18. * REAL A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
  19. * $ R( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
  20. * $ WORK( LWORK )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> SRQT01 tests SGERQF, which computes the RQ factorization of an m-by-n
  30. *> matrix A, and partially tests SORGRQ which forms the n-by-n
  31. *> orthogonal matrix Q.
  32. *>
  33. *> SRQT01 compares R with A*Q', and checks that Q is orthogonal.
  34. *> \endverbatim
  35. *
  36. * Arguments:
  37. * ==========
  38. *
  39. *> \param[in] M
  40. *> \verbatim
  41. *> M is INTEGER
  42. *> The number of rows of the matrix A. M >= 0.
  43. *> \endverbatim
  44. *>
  45. *> \param[in] N
  46. *> \verbatim
  47. *> N is INTEGER
  48. *> The number of columns of the matrix A. N >= 0.
  49. *> \endverbatim
  50. *>
  51. *> \param[in] A
  52. *> \verbatim
  53. *> A is REAL array, dimension (LDA,N)
  54. *> The m-by-n matrix A.
  55. *> \endverbatim
  56. *>
  57. *> \param[out] AF
  58. *> \verbatim
  59. *> AF is REAL array, dimension (LDA,N)
  60. *> Details of the RQ factorization of A, as returned by SGERQF.
  61. *> See SGERQF for further details.
  62. *> \endverbatim
  63. *>
  64. *> \param[out] Q
  65. *> \verbatim
  66. *> Q is REAL array, dimension (LDA,N)
  67. *> The n-by-n orthogonal matrix Q.
  68. *> \endverbatim
  69. *>
  70. *> \param[out] R
  71. *> \verbatim
  72. *> R is REAL array, dimension (LDA,max(M,N))
  73. *> \endverbatim
  74. *>
  75. *> \param[in] LDA
  76. *> \verbatim
  77. *> LDA is INTEGER
  78. *> The leading dimension of the arrays A, AF, Q and L.
  79. *> LDA >= max(M,N).
  80. *> \endverbatim
  81. *>
  82. *> \param[out] TAU
  83. *> \verbatim
  84. *> TAU is REAL array, dimension (min(M,N))
  85. *> The scalar factors of the elementary reflectors, as returned
  86. *> by SGERQF.
  87. *> \endverbatim
  88. *>
  89. *> \param[out] WORK
  90. *> \verbatim
  91. *> WORK is REAL array, dimension (LWORK)
  92. *> \endverbatim
  93. *>
  94. *> \param[in] LWORK
  95. *> \verbatim
  96. *> LWORK is INTEGER
  97. *> The dimension of the array WORK.
  98. *> \endverbatim
  99. *>
  100. *> \param[out] RWORK
  101. *> \verbatim
  102. *> RWORK is REAL array, dimension (max(M,N))
  103. *> \endverbatim
  104. *>
  105. *> \param[out] RESULT
  106. *> \verbatim
  107. *> RESULT is REAL array, dimension (2)
  108. *> The test ratios:
  109. *> RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS )
  110. *> RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
  111. *> \endverbatim
  112. *
  113. * Authors:
  114. * ========
  115. *
  116. *> \author Univ. of Tennessee
  117. *> \author Univ. of California Berkeley
  118. *> \author Univ. of Colorado Denver
  119. *> \author NAG Ltd.
  120. *
  121. *> \date December 2016
  122. *
  123. *> \ingroup single_lin
  124. *
  125. * =====================================================================
  126. SUBROUTINE SRQT01( M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK,
  127. $ RWORK, RESULT )
  128. *
  129. * -- LAPACK test routine (version 3.7.0) --
  130. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  131. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  132. * December 2016
  133. *
  134. * .. Scalar Arguments ..
  135. INTEGER LDA, LWORK, M, N
  136. * ..
  137. * .. Array Arguments ..
  138. REAL A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
  139. $ R( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
  140. $ WORK( LWORK )
  141. * ..
  142. *
  143. * =====================================================================
  144. *
  145. * .. Parameters ..
  146. REAL ZERO, ONE
  147. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  148. REAL ROGUE
  149. PARAMETER ( ROGUE = -1.0E+10 )
  150. * ..
  151. * .. Local Scalars ..
  152. INTEGER INFO, MINMN
  153. REAL ANORM, EPS, RESID
  154. * ..
  155. * .. External Functions ..
  156. REAL SLAMCH, SLANGE, SLANSY
  157. EXTERNAL SLAMCH, SLANGE, SLANSY
  158. * ..
  159. * .. External Subroutines ..
  160. EXTERNAL SGEMM, SGERQF, SLACPY, SLASET, SORGRQ, SSYRK
  161. * ..
  162. * .. Intrinsic Functions ..
  163. INTRINSIC MAX, MIN, REAL
  164. * ..
  165. * .. Scalars in Common ..
  166. CHARACTER*32 SRNAMT
  167. * ..
  168. * .. Common blocks ..
  169. COMMON / SRNAMC / SRNAMT
  170. * ..
  171. * .. Executable Statements ..
  172. *
  173. MINMN = MIN( M, N )
  174. EPS = SLAMCH( 'Epsilon' )
  175. *
  176. * Copy the matrix A to the array AF.
  177. *
  178. CALL SLACPY( 'Full', M, N, A, LDA, AF, LDA )
  179. *
  180. * Factorize the matrix A in the array AF.
  181. *
  182. SRNAMT = 'SGERQF'
  183. CALL SGERQF( M, N, AF, LDA, TAU, WORK, LWORK, INFO )
  184. *
  185. * Copy details of Q
  186. *
  187. CALL SLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA )
  188. IF( M.LE.N ) THEN
  189. IF( M.GT.0 .AND. M.LT.N )
  190. $ CALL SLACPY( 'Full', M, N-M, AF, LDA, Q( N-M+1, 1 ), LDA )
  191. IF( M.GT.1 )
  192. $ CALL SLACPY( 'Lower', M-1, M-1, AF( 2, N-M+1 ), LDA,
  193. $ Q( N-M+2, N-M+1 ), LDA )
  194. ELSE
  195. IF( N.GT.1 )
  196. $ CALL SLACPY( 'Lower', N-1, N-1, AF( M-N+2, 1 ), LDA,
  197. $ Q( 2, 1 ), LDA )
  198. END IF
  199. *
  200. * Generate the n-by-n matrix Q
  201. *
  202. SRNAMT = 'SORGRQ'
  203. CALL SORGRQ( N, N, MINMN, Q, LDA, TAU, WORK, LWORK, INFO )
  204. *
  205. * Copy R
  206. *
  207. CALL SLASET( 'Full', M, N, ZERO, ZERO, R, LDA )
  208. IF( M.LE.N ) THEN
  209. IF( M.GT.0 )
  210. $ CALL SLACPY( 'Upper', M, M, AF( 1, N-M+1 ), LDA,
  211. $ R( 1, N-M+1 ), LDA )
  212. ELSE
  213. IF( M.GT.N .AND. N.GT.0 )
  214. $ CALL SLACPY( 'Full', M-N, N, AF, LDA, R, LDA )
  215. IF( N.GT.0 )
  216. $ CALL SLACPY( 'Upper', N, N, AF( M-N+1, 1 ), LDA,
  217. $ R( M-N+1, 1 ), LDA )
  218. END IF
  219. *
  220. * Compute R - A*Q'
  221. *
  222. CALL SGEMM( 'No transpose', 'Transpose', M, N, N, -ONE, A, LDA, Q,
  223. $ LDA, ONE, R, LDA )
  224. *
  225. * Compute norm( R - Q'*A ) / ( N * norm(A) * EPS ) .
  226. *
  227. ANORM = SLANGE( '1', M, N, A, LDA, RWORK )
  228. RESID = SLANGE( '1', M, N, R, LDA, RWORK )
  229. IF( ANORM.GT.ZERO ) THEN
  230. RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, N ) ) ) / ANORM ) / EPS
  231. ELSE
  232. RESULT( 1 ) = ZERO
  233. END IF
  234. *
  235. * Compute I - Q*Q'
  236. *
  237. CALL SLASET( 'Full', N, N, ZERO, ONE, R, LDA )
  238. CALL SSYRK( 'Upper', 'No transpose', N, N, -ONE, Q, LDA, ONE, R,
  239. $ LDA )
  240. *
  241. * Compute norm( I - Q*Q' ) / ( N * EPS ) .
  242. *
  243. RESID = SLANSY( '1', 'Upper', N, R, LDA, RWORK )
  244. *
  245. RESULT( 2 ) = ( RESID / REAL( MAX( 1, N ) ) ) / EPS
  246. *
  247. RETURN
  248. *
  249. * End of SRQT01
  250. *
  251. END