You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cpot05.f 9.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298
  1. *> \brief \b CPOT05
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CPOT05( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, XACT,
  12. * LDXACT, FERR, BERR, RESLTS )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER UPLO
  16. * INTEGER LDA, LDB, LDX, LDXACT, N, NRHS
  17. * ..
  18. * .. Array Arguments ..
  19. * REAL BERR( * ), FERR( * ), RESLTS( * )
  20. * COMPLEX A( LDA, * ), B( LDB, * ), X( LDX, * ),
  21. * $ XACT( LDXACT, * )
  22. * ..
  23. *
  24. *
  25. *> \par Purpose:
  26. * =============
  27. *>
  28. *> \verbatim
  29. *>
  30. *> CPOT05 tests the error bounds from iterative refinement for the
  31. *> computed solution to a system of equations A*X = B, where A is a
  32. *> Hermitian n by n matrix.
  33. *>
  34. *> RESLTS(1) = test of the error bound
  35. *> = norm(X - XACT) / ( norm(X) * FERR )
  36. *>
  37. *> A large value is returned if this ratio is not less than one.
  38. *>
  39. *> RESLTS(2) = residual from the iterative refinement routine
  40. *> = the maximum of BERR / ( (n+1)*EPS + (*) ), where
  41. *> (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
  42. *> \endverbatim
  43. *
  44. * Arguments:
  45. * ==========
  46. *
  47. *> \param[in] UPLO
  48. *> \verbatim
  49. *> UPLO is CHARACTER*1
  50. *> Specifies whether the upper or lower triangular part of the
  51. *> Hermitian matrix A is stored.
  52. *> = 'U': Upper triangular
  53. *> = 'L': Lower triangular
  54. *> \endverbatim
  55. *>
  56. *> \param[in] N
  57. *> \verbatim
  58. *> N is INTEGER
  59. *> The number of rows of the matrices X, B, and XACT, and the
  60. *> order of the matrix A. N >= 0.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] NRHS
  64. *> \verbatim
  65. *> NRHS is INTEGER
  66. *> The number of columns of the matrices X, B, and XACT.
  67. *> NRHS >= 0.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] A
  71. *> \verbatim
  72. *> A is COMPLEX array, dimension (LDA,N)
  73. *> The Hermitian matrix A. If UPLO = 'U', the leading n by n
  74. *> upper triangular part of A contains the upper triangular part
  75. *> of the matrix A, and the strictly lower triangular part of A
  76. *> is not referenced. If UPLO = 'L', the leading n by n lower
  77. *> triangular part of A contains the lower triangular part of
  78. *> the matrix A, and the strictly upper triangular part of A is
  79. *> not referenced.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] LDA
  83. *> \verbatim
  84. *> LDA is INTEGER
  85. *> The leading dimension of the array A. LDA >= max(1,N).
  86. *> \endverbatim
  87. *>
  88. *> \param[in] B
  89. *> \verbatim
  90. *> B is COMPLEX array, dimension (LDB,NRHS)
  91. *> The right hand side vectors for the system of linear
  92. *> equations.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] LDB
  96. *> \verbatim
  97. *> LDB is INTEGER
  98. *> The leading dimension of the array B. LDB >= max(1,N).
  99. *> \endverbatim
  100. *>
  101. *> \param[in] X
  102. *> \verbatim
  103. *> X is COMPLEX array, dimension (LDX,NRHS)
  104. *> The computed solution vectors. Each vector is stored as a
  105. *> column of the matrix X.
  106. *> \endverbatim
  107. *>
  108. *> \param[in] LDX
  109. *> \verbatim
  110. *> LDX is INTEGER
  111. *> The leading dimension of the array X. LDX >= max(1,N).
  112. *> \endverbatim
  113. *>
  114. *> \param[in] XACT
  115. *> \verbatim
  116. *> XACT is COMPLEX array, dimension (LDX,NRHS)
  117. *> The exact solution vectors. Each vector is stored as a
  118. *> column of the matrix XACT.
  119. *> \endverbatim
  120. *>
  121. *> \param[in] LDXACT
  122. *> \verbatim
  123. *> LDXACT is INTEGER
  124. *> The leading dimension of the array XACT. LDXACT >= max(1,N).
  125. *> \endverbatim
  126. *>
  127. *> \param[in] FERR
  128. *> \verbatim
  129. *> FERR is REAL array, dimension (NRHS)
  130. *> The estimated forward error bounds for each solution vector
  131. *> X. If XTRUE is the true solution, FERR bounds the magnitude
  132. *> of the largest entry in (X - XTRUE) divided by the magnitude
  133. *> of the largest entry in X.
  134. *> \endverbatim
  135. *>
  136. *> \param[in] BERR
  137. *> \verbatim
  138. *> BERR is REAL array, dimension (NRHS)
  139. *> The componentwise relative backward error of each solution
  140. *> vector (i.e., the smallest relative change in any entry of A
  141. *> or B that makes X an exact solution).
  142. *> \endverbatim
  143. *>
  144. *> \param[out] RESLTS
  145. *> \verbatim
  146. *> RESLTS is REAL array, dimension (2)
  147. *> The maximum over the NRHS solution vectors of the ratios:
  148. *> RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
  149. *> RESLTS(2) = BERR / ( (n+1)*EPS + (*) )
  150. *> \endverbatim
  151. *
  152. * Authors:
  153. * ========
  154. *
  155. *> \author Univ. of Tennessee
  156. *> \author Univ. of California Berkeley
  157. *> \author Univ. of Colorado Denver
  158. *> \author NAG Ltd.
  159. *
  160. *> \date December 2016
  161. *
  162. *> \ingroup complex_lin
  163. *
  164. * =====================================================================
  165. SUBROUTINE CPOT05( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, XACT,
  166. $ LDXACT, FERR, BERR, RESLTS )
  167. *
  168. * -- LAPACK test routine (version 3.7.0) --
  169. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  170. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  171. * December 2016
  172. *
  173. * .. Scalar Arguments ..
  174. CHARACTER UPLO
  175. INTEGER LDA, LDB, LDX, LDXACT, N, NRHS
  176. * ..
  177. * .. Array Arguments ..
  178. REAL BERR( * ), FERR( * ), RESLTS( * )
  179. COMPLEX A( LDA, * ), B( LDB, * ), X( LDX, * ),
  180. $ XACT( LDXACT, * )
  181. * ..
  182. *
  183. * =====================================================================
  184. *
  185. * .. Parameters ..
  186. REAL ZERO, ONE
  187. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  188. * ..
  189. * .. Local Scalars ..
  190. LOGICAL UPPER
  191. INTEGER I, IMAX, J, K
  192. REAL AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
  193. COMPLEX ZDUM
  194. * ..
  195. * .. External Functions ..
  196. LOGICAL LSAME
  197. INTEGER ICAMAX
  198. REAL SLAMCH
  199. EXTERNAL LSAME, ICAMAX, SLAMCH
  200. * ..
  201. * .. Intrinsic Functions ..
  202. INTRINSIC ABS, AIMAG, MAX, MIN, REAL
  203. * ..
  204. * .. Statement Functions ..
  205. REAL CABS1
  206. * ..
  207. * .. Statement Function definitions ..
  208. CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
  209. * ..
  210. * .. Executable Statements ..
  211. *
  212. * Quick exit if N = 0 or NRHS = 0.
  213. *
  214. IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
  215. RESLTS( 1 ) = ZERO
  216. RESLTS( 2 ) = ZERO
  217. RETURN
  218. END IF
  219. *
  220. EPS = SLAMCH( 'Epsilon' )
  221. UNFL = SLAMCH( 'Safe minimum' )
  222. OVFL = ONE / UNFL
  223. UPPER = LSAME( UPLO, 'U' )
  224. *
  225. * Test 1: Compute the maximum of
  226. * norm(X - XACT) / ( norm(X) * FERR )
  227. * over all the vectors X and XACT using the infinity-norm.
  228. *
  229. ERRBND = ZERO
  230. DO 30 J = 1, NRHS
  231. IMAX = ICAMAX( N, X( 1, J ), 1 )
  232. XNORM = MAX( CABS1( X( IMAX, J ) ), UNFL )
  233. DIFF = ZERO
  234. DO 10 I = 1, N
  235. DIFF = MAX( DIFF, CABS1( X( I, J )-XACT( I, J ) ) )
  236. 10 CONTINUE
  237. *
  238. IF( XNORM.GT.ONE ) THEN
  239. GO TO 20
  240. ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
  241. GO TO 20
  242. ELSE
  243. ERRBND = ONE / EPS
  244. GO TO 30
  245. END IF
  246. *
  247. 20 CONTINUE
  248. IF( DIFF / XNORM.LE.FERR( J ) ) THEN
  249. ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
  250. ELSE
  251. ERRBND = ONE / EPS
  252. END IF
  253. 30 CONTINUE
  254. RESLTS( 1 ) = ERRBND
  255. *
  256. * Test 2: Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where
  257. * (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
  258. *
  259. DO 90 K = 1, NRHS
  260. DO 80 I = 1, N
  261. TMP = CABS1( B( I, K ) )
  262. IF( UPPER ) THEN
  263. DO 40 J = 1, I - 1
  264. TMP = TMP + CABS1( A( J, I ) )*CABS1( X( J, K ) )
  265. 40 CONTINUE
  266. TMP = TMP + ABS( REAL( A( I, I ) ) )*CABS1( X( I, K ) )
  267. DO 50 J = I + 1, N
  268. TMP = TMP + CABS1( A( I, J ) )*CABS1( X( J, K ) )
  269. 50 CONTINUE
  270. ELSE
  271. DO 60 J = 1, I - 1
  272. TMP = TMP + CABS1( A( I, J ) )*CABS1( X( J, K ) )
  273. 60 CONTINUE
  274. TMP = TMP + ABS( REAL( A( I, I ) ) )*CABS1( X( I, K ) )
  275. DO 70 J = I + 1, N
  276. TMP = TMP + CABS1( A( J, I ) )*CABS1( X( J, K ) )
  277. 70 CONTINUE
  278. END IF
  279. IF( I.EQ.1 ) THEN
  280. AXBI = TMP
  281. ELSE
  282. AXBI = MIN( AXBI, TMP )
  283. END IF
  284. 80 CONTINUE
  285. TMP = BERR( K ) / ( ( N+1 )*EPS+( N+1 )*UNFL /
  286. $ MAX( AXBI, ( N+1 )*UNFL ) )
  287. IF( K.EQ.1 ) THEN
  288. RESLTS( 2 ) = TMP
  289. ELSE
  290. RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
  291. END IF
  292. 90 CONTINUE
  293. *
  294. RETURN
  295. *
  296. * End of CPOT05
  297. *
  298. END