You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zungtr.f 7.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256
  1. *> \brief \b ZUNGTR
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZUNGTR + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zungtr.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zungtr.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zungtr.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZUNGTR( UPLO, N, A, LDA, TAU, WORK, LWORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, LWORK, N
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> ZUNGTR generates a complex unitary matrix Q which is defined as the
  38. *> product of n-1 elementary reflectors of order N, as returned by
  39. *> ZHETRD:
  40. *>
  41. *> if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
  42. *>
  43. *> if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] UPLO
  50. *> \verbatim
  51. *> UPLO is CHARACTER*1
  52. *> = 'U': Upper triangle of A contains elementary reflectors
  53. *> from ZHETRD;
  54. *> = 'L': Lower triangle of A contains elementary reflectors
  55. *> from ZHETRD.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix Q. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in,out] A
  65. *> \verbatim
  66. *> A is COMPLEX*16 array, dimension (LDA,N)
  67. *> On entry, the vectors which define the elementary reflectors,
  68. *> as returned by ZHETRD.
  69. *> On exit, the N-by-N unitary matrix Q.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] LDA
  73. *> \verbatim
  74. *> LDA is INTEGER
  75. *> The leading dimension of the array A. LDA >= N.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] TAU
  79. *> \verbatim
  80. *> TAU is COMPLEX*16 array, dimension (N-1)
  81. *> TAU(i) must contain the scalar factor of the elementary
  82. *> reflector H(i), as returned by ZHETRD.
  83. *> \endverbatim
  84. *>
  85. *> \param[out] WORK
  86. *> \verbatim
  87. *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  88. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] LWORK
  92. *> \verbatim
  93. *> LWORK is INTEGER
  94. *> The dimension of the array WORK. LWORK >= N-1.
  95. *> For optimum performance LWORK >= (N-1)*NB, where NB is
  96. *> the optimal blocksize.
  97. *>
  98. *> If LWORK = -1, then a workspace query is assumed; the routine
  99. *> only calculates the optimal size of the WORK array, returns
  100. *> this value as the first entry of the WORK array, and no error
  101. *> message related to LWORK is issued by XERBLA.
  102. *> \endverbatim
  103. *>
  104. *> \param[out] INFO
  105. *> \verbatim
  106. *> INFO is INTEGER
  107. *> = 0: successful exit
  108. *> < 0: if INFO = -i, the i-th argument had an illegal value
  109. *> \endverbatim
  110. *
  111. * Authors:
  112. * ========
  113. *
  114. *> \author Univ. of Tennessee
  115. *> \author Univ. of California Berkeley
  116. *> \author Univ. of Colorado Denver
  117. *> \author NAG Ltd.
  118. *
  119. *> \date December 2016
  120. *
  121. *> \ingroup complex16OTHERcomputational
  122. *
  123. * =====================================================================
  124. SUBROUTINE ZUNGTR( UPLO, N, A, LDA, TAU, WORK, LWORK, INFO )
  125. *
  126. * -- LAPACK computational routine (version 3.7.0) --
  127. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  128. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  129. * December 2016
  130. *
  131. * .. Scalar Arguments ..
  132. CHARACTER UPLO
  133. INTEGER INFO, LDA, LWORK, N
  134. * ..
  135. * .. Array Arguments ..
  136. COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
  137. * ..
  138. *
  139. * =====================================================================
  140. *
  141. * .. Parameters ..
  142. COMPLEX*16 ZERO, ONE
  143. PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
  144. $ ONE = ( 1.0D+0, 0.0D+0 ) )
  145. * ..
  146. * .. Local Scalars ..
  147. LOGICAL LQUERY, UPPER
  148. INTEGER I, IINFO, J, LWKOPT, NB
  149. * ..
  150. * .. External Functions ..
  151. LOGICAL LSAME
  152. INTEGER ILAENV
  153. EXTERNAL LSAME, ILAENV
  154. * ..
  155. * .. External Subroutines ..
  156. EXTERNAL XERBLA, ZUNGQL, ZUNGQR
  157. * ..
  158. * .. Intrinsic Functions ..
  159. INTRINSIC MAX
  160. * ..
  161. * .. Executable Statements ..
  162. *
  163. * Test the input arguments
  164. *
  165. INFO = 0
  166. LQUERY = ( LWORK.EQ.-1 )
  167. UPPER = LSAME( UPLO, 'U' )
  168. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  169. INFO = -1
  170. ELSE IF( N.LT.0 ) THEN
  171. INFO = -2
  172. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  173. INFO = -4
  174. ELSE IF( LWORK.LT.MAX( 1, N-1 ) .AND. .NOT.LQUERY ) THEN
  175. INFO = -7
  176. END IF
  177. *
  178. IF( INFO.EQ.0 ) THEN
  179. IF( UPPER ) THEN
  180. NB = ILAENV( 1, 'ZUNGQL', ' ', N-1, N-1, N-1, -1 )
  181. ELSE
  182. NB = ILAENV( 1, 'ZUNGQR', ' ', N-1, N-1, N-1, -1 )
  183. END IF
  184. LWKOPT = MAX( 1, N-1 )*NB
  185. WORK( 1 ) = LWKOPT
  186. END IF
  187. *
  188. IF( INFO.NE.0 ) THEN
  189. CALL XERBLA( 'ZUNGTR', -INFO )
  190. RETURN
  191. ELSE IF( LQUERY ) THEN
  192. RETURN
  193. END IF
  194. *
  195. * Quick return if possible
  196. *
  197. IF( N.EQ.0 ) THEN
  198. WORK( 1 ) = 1
  199. RETURN
  200. END IF
  201. *
  202. IF( UPPER ) THEN
  203. *
  204. * Q was determined by a call to ZHETRD with UPLO = 'U'
  205. *
  206. * Shift the vectors which define the elementary reflectors one
  207. * column to the left, and set the last row and column of Q to
  208. * those of the unit matrix
  209. *
  210. DO 20 J = 1, N - 1
  211. DO 10 I = 1, J - 1
  212. A( I, J ) = A( I, J+1 )
  213. 10 CONTINUE
  214. A( N, J ) = ZERO
  215. 20 CONTINUE
  216. DO 30 I = 1, N - 1
  217. A( I, N ) = ZERO
  218. 30 CONTINUE
  219. A( N, N ) = ONE
  220. *
  221. * Generate Q(1:n-1,1:n-1)
  222. *
  223. CALL ZUNGQL( N-1, N-1, N-1, A, LDA, TAU, WORK, LWORK, IINFO )
  224. *
  225. ELSE
  226. *
  227. * Q was determined by a call to ZHETRD with UPLO = 'L'.
  228. *
  229. * Shift the vectors which define the elementary reflectors one
  230. * column to the right, and set the first row and column of Q to
  231. * those of the unit matrix
  232. *
  233. DO 50 J = N, 2, -1
  234. A( 1, J ) = ZERO
  235. DO 40 I = J + 1, N
  236. A( I, J ) = A( I, J-1 )
  237. 40 CONTINUE
  238. 50 CONTINUE
  239. A( 1, 1 ) = ONE
  240. DO 60 I = 2, N
  241. A( I, 1 ) = ZERO
  242. 60 CONTINUE
  243. IF( N.GT.1 ) THEN
  244. *
  245. * Generate Q(2:n,2:n)
  246. *
  247. CALL ZUNGQR( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
  248. $ LWORK, IINFO )
  249. END IF
  250. END IF
  251. WORK( 1 ) = LWKOPT
  252. RETURN
  253. *
  254. * End of ZUNGTR
  255. *
  256. END