You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ztfttr.f 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538
  1. *> \brief \b ZTFTTR copies a triangular matrix from the rectangular full packed format (TF) to the standard full format (TR).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZTFTTR + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztfttr.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztfttr.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztfttr.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZTFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER TRANSR, UPLO
  25. * INTEGER INFO, N, LDA
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX*16 A( 0: LDA-1, 0: * ), ARF( 0: * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> ZTFTTR copies a triangular matrix A from rectangular full packed
  38. *> format (TF) to standard full format (TR).
  39. *> \endverbatim
  40. *
  41. * Arguments:
  42. * ==========
  43. *
  44. *> \param[in] TRANSR
  45. *> \verbatim
  46. *> TRANSR is CHARACTER*1
  47. *> = 'N': ARF is in Normal format;
  48. *> = 'C': ARF is in Conjugate-transpose format;
  49. *> \endverbatim
  50. *>
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> = 'U': A is upper triangular;
  55. *> = 'L': A is lower triangular.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] ARF
  65. *> \verbatim
  66. *> ARF is COMPLEX*16 array, dimension ( N*(N+1)/2 ),
  67. *> On entry, the upper or lower triangular matrix A stored in
  68. *> RFP format. For a further discussion see Notes below.
  69. *> \endverbatim
  70. *>
  71. *> \param[out] A
  72. *> \verbatim
  73. *> A is COMPLEX*16 array, dimension ( LDA, N )
  74. *> On exit, the triangular matrix A. If UPLO = 'U', the
  75. *> leading N-by-N upper triangular part of the array A contains
  76. *> the upper triangular matrix, and the strictly lower
  77. *> triangular part of A is not referenced. If UPLO = 'L', the
  78. *> leading N-by-N lower triangular part of the array A contains
  79. *> the lower triangular matrix, and the strictly upper
  80. *> triangular part of A is not referenced.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] LDA
  84. *> \verbatim
  85. *> LDA is INTEGER
  86. *> The leading dimension of the array A. LDA >= max(1,N).
  87. *> \endverbatim
  88. *>
  89. *> \param[out] INFO
  90. *> \verbatim
  91. *> INFO is INTEGER
  92. *> = 0: successful exit
  93. *> < 0: if INFO = -i, the i-th argument had an illegal value
  94. *> \endverbatim
  95. *
  96. * Authors:
  97. * ========
  98. *
  99. *> \author Univ. of Tennessee
  100. *> \author Univ. of California Berkeley
  101. *> \author Univ. of Colorado Denver
  102. *> \author NAG Ltd.
  103. *
  104. *> \date December 2016
  105. *
  106. *> \ingroup complex16OTHERcomputational
  107. *
  108. *> \par Further Details:
  109. * =====================
  110. *>
  111. *> \verbatim
  112. *>
  113. *> We first consider Standard Packed Format when N is even.
  114. *> We give an example where N = 6.
  115. *>
  116. *> AP is Upper AP is Lower
  117. *>
  118. *> 00 01 02 03 04 05 00
  119. *> 11 12 13 14 15 10 11
  120. *> 22 23 24 25 20 21 22
  121. *> 33 34 35 30 31 32 33
  122. *> 44 45 40 41 42 43 44
  123. *> 55 50 51 52 53 54 55
  124. *>
  125. *>
  126. *> Let TRANSR = 'N'. RFP holds AP as follows:
  127. *> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  128. *> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  129. *> conjugate-transpose of the first three columns of AP upper.
  130. *> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  131. *> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  132. *> conjugate-transpose of the last three columns of AP lower.
  133. *> To denote conjugate we place -- above the element. This covers the
  134. *> case N even and TRANSR = 'N'.
  135. *>
  136. *> RFP A RFP A
  137. *>
  138. *> -- -- --
  139. *> 03 04 05 33 43 53
  140. *> -- --
  141. *> 13 14 15 00 44 54
  142. *> --
  143. *> 23 24 25 10 11 55
  144. *>
  145. *> 33 34 35 20 21 22
  146. *> --
  147. *> 00 44 45 30 31 32
  148. *> -- --
  149. *> 01 11 55 40 41 42
  150. *> -- -- --
  151. *> 02 12 22 50 51 52
  152. *>
  153. *> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  154. *> transpose of RFP A above. One therefore gets:
  155. *>
  156. *>
  157. *> RFP A RFP A
  158. *>
  159. *> -- -- -- -- -- -- -- -- -- --
  160. *> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
  161. *> -- -- -- -- -- -- -- -- -- --
  162. *> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
  163. *> -- -- -- -- -- -- -- -- -- --
  164. *> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
  165. *>
  166. *>
  167. *> We next consider Standard Packed Format when N is odd.
  168. *> We give an example where N = 5.
  169. *>
  170. *> AP is Upper AP is Lower
  171. *>
  172. *> 00 01 02 03 04 00
  173. *> 11 12 13 14 10 11
  174. *> 22 23 24 20 21 22
  175. *> 33 34 30 31 32 33
  176. *> 44 40 41 42 43 44
  177. *>
  178. *>
  179. *> Let TRANSR = 'N'. RFP holds AP as follows:
  180. *> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  181. *> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  182. *> conjugate-transpose of the first two columns of AP upper.
  183. *> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  184. *> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  185. *> conjugate-transpose of the last two columns of AP lower.
  186. *> To denote conjugate we place -- above the element. This covers the
  187. *> case N odd and TRANSR = 'N'.
  188. *>
  189. *> RFP A RFP A
  190. *>
  191. *> -- --
  192. *> 02 03 04 00 33 43
  193. *> --
  194. *> 12 13 14 10 11 44
  195. *>
  196. *> 22 23 24 20 21 22
  197. *> --
  198. *> 00 33 34 30 31 32
  199. *> -- --
  200. *> 01 11 44 40 41 42
  201. *>
  202. *> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  203. *> transpose of RFP A above. One therefore gets:
  204. *>
  205. *>
  206. *> RFP A RFP A
  207. *>
  208. *> -- -- -- -- -- -- -- -- --
  209. *> 02 12 22 00 01 00 10 20 30 40 50
  210. *> -- -- -- -- -- -- -- -- --
  211. *> 03 13 23 33 11 33 11 21 31 41 51
  212. *> -- -- -- -- -- -- -- -- --
  213. *> 04 14 24 34 44 43 44 22 32 42 52
  214. *> \endverbatim
  215. *>
  216. * =====================================================================
  217. SUBROUTINE ZTFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO )
  218. *
  219. * -- LAPACK computational routine (version 3.7.0) --
  220. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  221. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  222. * December 2016
  223. *
  224. * .. Scalar Arguments ..
  225. CHARACTER TRANSR, UPLO
  226. INTEGER INFO, N, LDA
  227. * ..
  228. * .. Array Arguments ..
  229. COMPLEX*16 A( 0: LDA-1, 0: * ), ARF( 0: * )
  230. * ..
  231. *
  232. * =====================================================================
  233. *
  234. * .. Parameters ..
  235. * ..
  236. * .. Local Scalars ..
  237. LOGICAL LOWER, NISODD, NORMALTRANSR
  238. INTEGER N1, N2, K, NT, NX2, NP1X2
  239. INTEGER I, J, L, IJ
  240. * ..
  241. * .. External Functions ..
  242. LOGICAL LSAME
  243. EXTERNAL LSAME
  244. * ..
  245. * .. External Subroutines ..
  246. EXTERNAL XERBLA
  247. * ..
  248. * .. Intrinsic Functions ..
  249. INTRINSIC DCONJG, MAX, MOD
  250. * ..
  251. * .. Executable Statements ..
  252. *
  253. * Test the input parameters.
  254. *
  255. INFO = 0
  256. NORMALTRANSR = LSAME( TRANSR, 'N' )
  257. LOWER = LSAME( UPLO, 'L' )
  258. IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
  259. INFO = -1
  260. ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  261. INFO = -2
  262. ELSE IF( N.LT.0 ) THEN
  263. INFO = -3
  264. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  265. INFO = -6
  266. END IF
  267. IF( INFO.NE.0 ) THEN
  268. CALL XERBLA( 'ZTFTTR', -INFO )
  269. RETURN
  270. END IF
  271. *
  272. * Quick return if possible
  273. *
  274. IF( N.LE.1 ) THEN
  275. IF( N.EQ.1 ) THEN
  276. IF( NORMALTRANSR ) THEN
  277. A( 0, 0 ) = ARF( 0 )
  278. ELSE
  279. A( 0, 0 ) = DCONJG( ARF( 0 ) )
  280. END IF
  281. END IF
  282. RETURN
  283. END IF
  284. *
  285. * Size of array ARF(1:2,0:nt-1)
  286. *
  287. NT = N*( N+1 ) / 2
  288. *
  289. * set N1 and N2 depending on LOWER: for N even N1=N2=K
  290. *
  291. IF( LOWER ) THEN
  292. N2 = N / 2
  293. N1 = N - N2
  294. ELSE
  295. N1 = N / 2
  296. N2 = N - N1
  297. END IF
  298. *
  299. * If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2.
  300. * If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is
  301. * N--by--(N+1)/2.
  302. *
  303. IF( MOD( N, 2 ).EQ.0 ) THEN
  304. K = N / 2
  305. NISODD = .FALSE.
  306. IF( .NOT.LOWER )
  307. $ NP1X2 = N + N + 2
  308. ELSE
  309. NISODD = .TRUE.
  310. IF( .NOT.LOWER )
  311. $ NX2 = N + N
  312. END IF
  313. *
  314. IF( NISODD ) THEN
  315. *
  316. * N is odd
  317. *
  318. IF( NORMALTRANSR ) THEN
  319. *
  320. * N is odd and TRANSR = 'N'
  321. *
  322. IF( LOWER ) THEN
  323. *
  324. * SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
  325. * T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
  326. * T1 -> a(0), T2 -> a(n), S -> a(n1); lda=n
  327. *
  328. IJ = 0
  329. DO J = 0, N2
  330. DO I = N1, N2 + J
  331. A( N2+J, I ) = DCONJG( ARF( IJ ) )
  332. IJ = IJ + 1
  333. END DO
  334. DO I = J, N - 1
  335. A( I, J ) = ARF( IJ )
  336. IJ = IJ + 1
  337. END DO
  338. END DO
  339. *
  340. ELSE
  341. *
  342. * SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
  343. * T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
  344. * T1 -> a(n2), T2 -> a(n1), S -> a(0); lda=n
  345. *
  346. IJ = NT - N
  347. DO J = N - 1, N1, -1
  348. DO I = 0, J
  349. A( I, J ) = ARF( IJ )
  350. IJ = IJ + 1
  351. END DO
  352. DO L = J - N1, N1 - 1
  353. A( J-N1, L ) = DCONJG( ARF( IJ ) )
  354. IJ = IJ + 1
  355. END DO
  356. IJ = IJ - NX2
  357. END DO
  358. *
  359. END IF
  360. *
  361. ELSE
  362. *
  363. * N is odd and TRANSR = 'C'
  364. *
  365. IF( LOWER ) THEN
  366. *
  367. * SRPA for LOWER, TRANSPOSE and N is odd
  368. * T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
  369. * T1 -> A(0+0) , T2 -> A(1+0) , S -> A(0+n1*n1); lda=n1
  370. *
  371. IJ = 0
  372. DO J = 0, N2 - 1
  373. DO I = 0, J
  374. A( J, I ) = DCONJG( ARF( IJ ) )
  375. IJ = IJ + 1
  376. END DO
  377. DO I = N1 + J, N - 1
  378. A( I, N1+J ) = ARF( IJ )
  379. IJ = IJ + 1
  380. END DO
  381. END DO
  382. DO J = N2, N - 1
  383. DO I = 0, N1 - 1
  384. A( J, I ) = DCONJG( ARF( IJ ) )
  385. IJ = IJ + 1
  386. END DO
  387. END DO
  388. *
  389. ELSE
  390. *
  391. * SRPA for UPPER, TRANSPOSE and N is odd
  392. * T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
  393. * T1 -> A(n2*n2), T2 -> A(n1*n2), S -> A(0); lda = n2
  394. *
  395. IJ = 0
  396. DO J = 0, N1
  397. DO I = N1, N - 1
  398. A( J, I ) = DCONJG( ARF( IJ ) )
  399. IJ = IJ + 1
  400. END DO
  401. END DO
  402. DO J = 0, N1 - 1
  403. DO I = 0, J
  404. A( I, J ) = ARF( IJ )
  405. IJ = IJ + 1
  406. END DO
  407. DO L = N2 + J, N - 1
  408. A( N2+J, L ) = DCONJG( ARF( IJ ) )
  409. IJ = IJ + 1
  410. END DO
  411. END DO
  412. *
  413. END IF
  414. *
  415. END IF
  416. *
  417. ELSE
  418. *
  419. * N is even
  420. *
  421. IF( NORMALTRANSR ) THEN
  422. *
  423. * N is even and TRANSR = 'N'
  424. *
  425. IF( LOWER ) THEN
  426. *
  427. * SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
  428. * T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
  429. * T1 -> a(1), T2 -> a(0), S -> a(k+1); lda=n+1
  430. *
  431. IJ = 0
  432. DO J = 0, K - 1
  433. DO I = K, K + J
  434. A( K+J, I ) = DCONJG( ARF( IJ ) )
  435. IJ = IJ + 1
  436. END DO
  437. DO I = J, N - 1
  438. A( I, J ) = ARF( IJ )
  439. IJ = IJ + 1
  440. END DO
  441. END DO
  442. *
  443. ELSE
  444. *
  445. * SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
  446. * T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0)
  447. * T1 -> a(k+1), T2 -> a(k), S -> a(0); lda=n+1
  448. *
  449. IJ = NT - N - 1
  450. DO J = N - 1, K, -1
  451. DO I = 0, J
  452. A( I, J ) = ARF( IJ )
  453. IJ = IJ + 1
  454. END DO
  455. DO L = J - K, K - 1
  456. A( J-K, L ) = DCONJG( ARF( IJ ) )
  457. IJ = IJ + 1
  458. END DO
  459. IJ = IJ - NP1X2
  460. END DO
  461. *
  462. END IF
  463. *
  464. ELSE
  465. *
  466. * N is even and TRANSR = 'C'
  467. *
  468. IF( LOWER ) THEN
  469. *
  470. * SRPA for LOWER, TRANSPOSE and N is even (see paper, A=B)
  471. * T1 -> A(0,1) , T2 -> A(0,0) , S -> A(0,k+1) :
  472. * T1 -> A(0+k) , T2 -> A(0+0) , S -> A(0+k*(k+1)); lda=k
  473. *
  474. IJ = 0
  475. J = K
  476. DO I = K, N - 1
  477. A( I, J ) = ARF( IJ )
  478. IJ = IJ + 1
  479. END DO
  480. DO J = 0, K - 2
  481. DO I = 0, J
  482. A( J, I ) = DCONJG( ARF( IJ ) )
  483. IJ = IJ + 1
  484. END DO
  485. DO I = K + 1 + J, N - 1
  486. A( I, K+1+J ) = ARF( IJ )
  487. IJ = IJ + 1
  488. END DO
  489. END DO
  490. DO J = K - 1, N - 1
  491. DO I = 0, K - 1
  492. A( J, I ) = DCONJG( ARF( IJ ) )
  493. IJ = IJ + 1
  494. END DO
  495. END DO
  496. *
  497. ELSE
  498. *
  499. * SRPA for UPPER, TRANSPOSE and N is even (see paper, A=B)
  500. * T1 -> A(0,k+1) , T2 -> A(0,k) , S -> A(0,0)
  501. * T1 -> A(0+k*(k+1)) , T2 -> A(0+k*k) , S -> A(0+0)); lda=k
  502. *
  503. IJ = 0
  504. DO J = 0, K
  505. DO I = K, N - 1
  506. A( J, I ) = DCONJG( ARF( IJ ) )
  507. IJ = IJ + 1
  508. END DO
  509. END DO
  510. DO J = 0, K - 2
  511. DO I = 0, J
  512. A( I, J ) = ARF( IJ )
  513. IJ = IJ + 1
  514. END DO
  515. DO L = K + 1 + J, N - 1
  516. A( K+1+J, L ) = DCONJG( ARF( IJ ) )
  517. IJ = IJ + 1
  518. END DO
  519. END DO
  520. *
  521. * Note that here J = K-1
  522. *
  523. DO I = 0, J
  524. A( I, J ) = ARF( IJ )
  525. IJ = IJ + 1
  526. END DO
  527. *
  528. END IF
  529. *
  530. END IF
  531. *
  532. END IF
  533. *
  534. RETURN
  535. *
  536. * End of ZTFTTR
  537. *
  538. END