You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zla_gerfsx_extended.f 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697
  1. *> \brief \b ZLA_GERFSX_EXTENDED
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLA_GERFSX_EXTENDED + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_gerfsx_extended.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_gerfsx_extended.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_gerfsx_extended.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
  22. * LDA, AF, LDAF, IPIV, COLEQU, C, B,
  23. * LDB, Y, LDY, BERR_OUT, N_NORMS,
  24. * ERRS_N, ERRS_C, RES, AYB, DY,
  25. * Y_TAIL, RCOND, ITHRESH, RTHRESH,
  26. * DZ_UB, IGNORE_CWISE, INFO )
  27. *
  28. * .. Scalar Arguments ..
  29. * INTEGER INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
  30. * $ TRANS_TYPE, N_NORMS
  31. * LOGICAL COLEQU, IGNORE_CWISE
  32. * INTEGER ITHRESH
  33. * DOUBLE PRECISION RTHRESH, DZ_UB
  34. * ..
  35. * .. Array Arguments
  36. * INTEGER IPIV( * )
  37. * COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  38. * $ Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
  39. * DOUBLE PRECISION C( * ), AYB( * ), RCOND, BERR_OUT( * ),
  40. * $ ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
  41. * ..
  42. *
  43. *
  44. *> \par Purpose:
  45. * =============
  46. *>
  47. *> \verbatim
  48. *>
  49. *> ZLA_GERFSX_EXTENDED improves the computed solution to a system of
  50. *> linear equations by performing extra-precise iterative refinement
  51. *> and provides error bounds and backward error estimates for the solution.
  52. *> This subroutine is called by ZGERFSX to perform iterative refinement.
  53. *> In addition to normwise error bound, the code provides maximum
  54. *> componentwise error bound if possible. See comments for ERRS_N
  55. *> and ERRS_C for details of the error bounds. Note that this
  56. *> subroutine is only resonsible for setting the second fields of
  57. *> ERRS_N and ERRS_C.
  58. *> \endverbatim
  59. *
  60. * Arguments:
  61. * ==========
  62. *
  63. *> \param[in] PREC_TYPE
  64. *> \verbatim
  65. *> PREC_TYPE is INTEGER
  66. *> Specifies the intermediate precision to be used in refinement.
  67. *> The value is defined by ILAPREC(P) where P is a CHARACTER and P
  68. *> = 'S': Single
  69. *> = 'D': Double
  70. *> = 'I': Indigenous
  71. *> = 'X' or 'E': Extra
  72. *> \endverbatim
  73. *>
  74. *> \param[in] TRANS_TYPE
  75. *> \verbatim
  76. *> TRANS_TYPE is INTEGER
  77. *> Specifies the transposition operation on A.
  78. *> The value is defined by ILATRANS(T) where T is a CHARACTER and T
  79. *> = 'N': No transpose
  80. *> = 'T': Transpose
  81. *> = 'C': Conjugate transpose
  82. *> \endverbatim
  83. *>
  84. *> \param[in] N
  85. *> \verbatim
  86. *> N is INTEGER
  87. *> The number of linear equations, i.e., the order of the
  88. *> matrix A. N >= 0.
  89. *> \endverbatim
  90. *>
  91. *> \param[in] NRHS
  92. *> \verbatim
  93. *> NRHS is INTEGER
  94. *> The number of right-hand-sides, i.e., the number of columns of the
  95. *> matrix B.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] A
  99. *> \verbatim
  100. *> A is COMPLEX*16 array, dimension (LDA,N)
  101. *> On entry, the N-by-N matrix A.
  102. *> \endverbatim
  103. *>
  104. *> \param[in] LDA
  105. *> \verbatim
  106. *> LDA is INTEGER
  107. *> The leading dimension of the array A. LDA >= max(1,N).
  108. *> \endverbatim
  109. *>
  110. *> \param[in] AF
  111. *> \verbatim
  112. *> AF is COMPLEX*16 array, dimension (LDAF,N)
  113. *> The factors L and U from the factorization
  114. *> A = P*L*U as computed by ZGETRF.
  115. *> \endverbatim
  116. *>
  117. *> \param[in] LDAF
  118. *> \verbatim
  119. *> LDAF is INTEGER
  120. *> The leading dimension of the array AF. LDAF >= max(1,N).
  121. *> \endverbatim
  122. *>
  123. *> \param[in] IPIV
  124. *> \verbatim
  125. *> IPIV is INTEGER array, dimension (N)
  126. *> The pivot indices from the factorization A = P*L*U
  127. *> as computed by ZGETRF; row i of the matrix was interchanged
  128. *> with row IPIV(i).
  129. *> \endverbatim
  130. *>
  131. *> \param[in] COLEQU
  132. *> \verbatim
  133. *> COLEQU is LOGICAL
  134. *> If .TRUE. then column equilibration was done to A before calling
  135. *> this routine. This is needed to compute the solution and error
  136. *> bounds correctly.
  137. *> \endverbatim
  138. *>
  139. *> \param[in] C
  140. *> \verbatim
  141. *> C is DOUBLE PRECISION array, dimension (N)
  142. *> The column scale factors for A. If COLEQU = .FALSE., C
  143. *> is not accessed. If C is input, each element of C should be a power
  144. *> of the radix to ensure a reliable solution and error estimates.
  145. *> Scaling by powers of the radix does not cause rounding errors unless
  146. *> the result underflows or overflows. Rounding errors during scaling
  147. *> lead to refining with a matrix that is not equivalent to the
  148. *> input matrix, producing error estimates that may not be
  149. *> reliable.
  150. *> \endverbatim
  151. *>
  152. *> \param[in] B
  153. *> \verbatim
  154. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  155. *> The right-hand-side matrix B.
  156. *> \endverbatim
  157. *>
  158. *> \param[in] LDB
  159. *> \verbatim
  160. *> LDB is INTEGER
  161. *> The leading dimension of the array B. LDB >= max(1,N).
  162. *> \endverbatim
  163. *>
  164. *> \param[in,out] Y
  165. *> \verbatim
  166. *> Y is COMPLEX*16 array, dimension (LDY,NRHS)
  167. *> On entry, the solution matrix X, as computed by ZGETRS.
  168. *> On exit, the improved solution matrix Y.
  169. *> \endverbatim
  170. *>
  171. *> \param[in] LDY
  172. *> \verbatim
  173. *> LDY is INTEGER
  174. *> The leading dimension of the array Y. LDY >= max(1,N).
  175. *> \endverbatim
  176. *>
  177. *> \param[out] BERR_OUT
  178. *> \verbatim
  179. *> BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
  180. *> On exit, BERR_OUT(j) contains the componentwise relative backward
  181. *> error for right-hand-side j from the formula
  182. *> max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  183. *> where abs(Z) is the componentwise absolute value of the matrix
  184. *> or vector Z. This is computed by ZLA_LIN_BERR.
  185. *> \endverbatim
  186. *>
  187. *> \param[in] N_NORMS
  188. *> \verbatim
  189. *> N_NORMS is INTEGER
  190. *> Determines which error bounds to return (see ERRS_N
  191. *> and ERRS_C).
  192. *> If N_NORMS >= 1 return normwise error bounds.
  193. *> If N_NORMS >= 2 return componentwise error bounds.
  194. *> \endverbatim
  195. *>
  196. *> \param[in,out] ERRS_N
  197. *> \verbatim
  198. *> ERRS_N is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  199. *> For each right-hand side, this array contains information about
  200. *> various error bounds and condition numbers corresponding to the
  201. *> normwise relative error, which is defined as follows:
  202. *>
  203. *> Normwise relative error in the ith solution vector:
  204. *> max_j (abs(XTRUE(j,i) - X(j,i)))
  205. *> ------------------------------
  206. *> max_j abs(X(j,i))
  207. *>
  208. *> The array is indexed by the type of error information as described
  209. *> below. There currently are up to three pieces of information
  210. *> returned.
  211. *>
  212. *> The first index in ERRS_N(i,:) corresponds to the ith
  213. *> right-hand side.
  214. *>
  215. *> The second index in ERRS_N(:,err) contains the following
  216. *> three fields:
  217. *> err = 1 "Trust/don't trust" boolean. Trust the answer if the
  218. *> reciprocal condition number is less than the threshold
  219. *> sqrt(n) * slamch('Epsilon').
  220. *>
  221. *> err = 2 "Guaranteed" error bound: The estimated forward error,
  222. *> almost certainly within a factor of 10 of the true error
  223. *> so long as the next entry is greater than the threshold
  224. *> sqrt(n) * slamch('Epsilon'). This error bound should only
  225. *> be trusted if the previous boolean is true.
  226. *>
  227. *> err = 3 Reciprocal condition number: Estimated normwise
  228. *> reciprocal condition number. Compared with the threshold
  229. *> sqrt(n) * slamch('Epsilon') to determine if the error
  230. *> estimate is "guaranteed". These reciprocal condition
  231. *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  232. *> appropriately scaled matrix Z.
  233. *> Let Z = S*A, where S scales each row by a power of the
  234. *> radix so all absolute row sums of Z are approximately 1.
  235. *>
  236. *> This subroutine is only responsible for setting the second field
  237. *> above.
  238. *> See Lapack Working Note 165 for further details and extra
  239. *> cautions.
  240. *> \endverbatim
  241. *>
  242. *> \param[in,out] ERRS_C
  243. *> \verbatim
  244. *> ERRS_C is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
  245. *> For each right-hand side, this array contains information about
  246. *> various error bounds and condition numbers corresponding to the
  247. *> componentwise relative error, which is defined as follows:
  248. *>
  249. *> Componentwise relative error in the ith solution vector:
  250. *> abs(XTRUE(j,i) - X(j,i))
  251. *> max_j ----------------------
  252. *> abs(X(j,i))
  253. *>
  254. *> The array is indexed by the right-hand side i (on which the
  255. *> componentwise relative error depends), and the type of error
  256. *> information as described below. There currently are up to three
  257. *> pieces of information returned for each right-hand side. If
  258. *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  259. *> ERRS_C is not accessed. If N_ERR_BNDS < 3, then at most
  260. *> the first (:,N_ERR_BNDS) entries are returned.
  261. *>
  262. *> The first index in ERRS_C(i,:) corresponds to the ith
  263. *> right-hand side.
  264. *>
  265. *> The second index in ERRS_C(:,err) contains the following
  266. *> three fields:
  267. *> err = 1 "Trust/don't trust" boolean. Trust the answer if the
  268. *> reciprocal condition number is less than the threshold
  269. *> sqrt(n) * slamch('Epsilon').
  270. *>
  271. *> err = 2 "Guaranteed" error bound: The estimated forward error,
  272. *> almost certainly within a factor of 10 of the true error
  273. *> so long as the next entry is greater than the threshold
  274. *> sqrt(n) * slamch('Epsilon'). This error bound should only
  275. *> be trusted if the previous boolean is true.
  276. *>
  277. *> err = 3 Reciprocal condition number: Estimated componentwise
  278. *> reciprocal condition number. Compared with the threshold
  279. *> sqrt(n) * slamch('Epsilon') to determine if the error
  280. *> estimate is "guaranteed". These reciprocal condition
  281. *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  282. *> appropriately scaled matrix Z.
  283. *> Let Z = S*(A*diag(x)), where x is the solution for the
  284. *> current right-hand side and S scales each row of
  285. *> A*diag(x) by a power of the radix so all absolute row
  286. *> sums of Z are approximately 1.
  287. *>
  288. *> This subroutine is only responsible for setting the second field
  289. *> above.
  290. *> See Lapack Working Note 165 for further details and extra
  291. *> cautions.
  292. *> \endverbatim
  293. *>
  294. *> \param[in] RES
  295. *> \verbatim
  296. *> RES is COMPLEX*16 array, dimension (N)
  297. *> Workspace to hold the intermediate residual.
  298. *> \endverbatim
  299. *>
  300. *> \param[in] AYB
  301. *> \verbatim
  302. *> AYB is DOUBLE PRECISION array, dimension (N)
  303. *> Workspace.
  304. *> \endverbatim
  305. *>
  306. *> \param[in] DY
  307. *> \verbatim
  308. *> DY is COMPLEX*16 array, dimension (N)
  309. *> Workspace to hold the intermediate solution.
  310. *> \endverbatim
  311. *>
  312. *> \param[in] Y_TAIL
  313. *> \verbatim
  314. *> Y_TAIL is COMPLEX*16 array, dimension (N)
  315. *> Workspace to hold the trailing bits of the intermediate solution.
  316. *> \endverbatim
  317. *>
  318. *> \param[in] RCOND
  319. *> \verbatim
  320. *> RCOND is DOUBLE PRECISION
  321. *> Reciprocal scaled condition number. This is an estimate of the
  322. *> reciprocal Skeel condition number of the matrix A after
  323. *> equilibration (if done). If this is less than the machine
  324. *> precision (in particular, if it is zero), the matrix is singular
  325. *> to working precision. Note that the error may still be small even
  326. *> if this number is very small and the matrix appears ill-
  327. *> conditioned.
  328. *> \endverbatim
  329. *>
  330. *> \param[in] ITHRESH
  331. *> \verbatim
  332. *> ITHRESH is INTEGER
  333. *> The maximum number of residual computations allowed for
  334. *> refinement. The default is 10. For 'aggressive' set to 100 to
  335. *> permit convergence using approximate factorizations or
  336. *> factorizations other than LU. If the factorization uses a
  337. *> technique other than Gaussian elimination, the guarantees in
  338. *> ERRS_N and ERRS_C may no longer be trustworthy.
  339. *> \endverbatim
  340. *>
  341. *> \param[in] RTHRESH
  342. *> \verbatim
  343. *> RTHRESH is DOUBLE PRECISION
  344. *> Determines when to stop refinement if the error estimate stops
  345. *> decreasing. Refinement will stop when the next solution no longer
  346. *> satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
  347. *> the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
  348. *> default value is 0.5. For 'aggressive' set to 0.9 to permit
  349. *> convergence on extremely ill-conditioned matrices. See LAWN 165
  350. *> for more details.
  351. *> \endverbatim
  352. *>
  353. *> \param[in] DZ_UB
  354. *> \verbatim
  355. *> DZ_UB is DOUBLE PRECISION
  356. *> Determines when to start considering componentwise convergence.
  357. *> Componentwise convergence is only considered after each component
  358. *> of the solution Y is stable, which we definte as the relative
  359. *> change in each component being less than DZ_UB. The default value
  360. *> is 0.25, requiring the first bit to be stable. See LAWN 165 for
  361. *> more details.
  362. *> \endverbatim
  363. *>
  364. *> \param[in] IGNORE_CWISE
  365. *> \verbatim
  366. *> IGNORE_CWISE is LOGICAL
  367. *> If .TRUE. then ignore componentwise convergence. Default value
  368. *> is .FALSE..
  369. *> \endverbatim
  370. *>
  371. *> \param[out] INFO
  372. *> \verbatim
  373. *> INFO is INTEGER
  374. *> = 0: Successful exit.
  375. *> < 0: if INFO = -i, the ith argument to ZGETRS had an illegal
  376. *> value
  377. *> \endverbatim
  378. *
  379. * Authors:
  380. * ========
  381. *
  382. *> \author Univ. of Tennessee
  383. *> \author Univ. of California Berkeley
  384. *> \author Univ. of Colorado Denver
  385. *> \author NAG Ltd.
  386. *
  387. *> \date June 2017
  388. *
  389. *> \ingroup complex16GEcomputational
  390. *
  391. * =====================================================================
  392. SUBROUTINE ZLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
  393. $ LDA, AF, LDAF, IPIV, COLEQU, C, B,
  394. $ LDB, Y, LDY, BERR_OUT, N_NORMS,
  395. $ ERRS_N, ERRS_C, RES, AYB, DY,
  396. $ Y_TAIL, RCOND, ITHRESH, RTHRESH,
  397. $ DZ_UB, IGNORE_CWISE, INFO )
  398. *
  399. * -- LAPACK computational routine (version 3.7.1) --
  400. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  401. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  402. * June 2017
  403. *
  404. * .. Scalar Arguments ..
  405. INTEGER INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
  406. $ TRANS_TYPE, N_NORMS
  407. LOGICAL COLEQU, IGNORE_CWISE
  408. INTEGER ITHRESH
  409. DOUBLE PRECISION RTHRESH, DZ_UB
  410. * ..
  411. * .. Array Arguments
  412. INTEGER IPIV( * )
  413. COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  414. $ Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
  415. DOUBLE PRECISION C( * ), AYB( * ), RCOND, BERR_OUT( * ),
  416. $ ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
  417. * ..
  418. *
  419. * =====================================================================
  420. *
  421. * .. Local Scalars ..
  422. CHARACTER TRANS
  423. INTEGER CNT, I, J, X_STATE, Z_STATE, Y_PREC_STATE
  424. DOUBLE PRECISION YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
  425. $ DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
  426. $ DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
  427. $ EPS, HUGEVAL, INCR_THRESH
  428. LOGICAL INCR_PREC
  429. COMPLEX*16 ZDUM
  430. * ..
  431. * .. Parameters ..
  432. INTEGER UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
  433. $ NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
  434. $ EXTRA_Y
  435. PARAMETER ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
  436. $ CONV_STATE = 2,
  437. $ NOPROG_STATE = 3 )
  438. PARAMETER ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
  439. $ EXTRA_Y = 2 )
  440. INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  441. INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  442. INTEGER CMP_ERR_I, PIV_GROWTH_I
  443. PARAMETER ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  444. $ BERR_I = 3 )
  445. PARAMETER ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  446. PARAMETER ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  447. $ PIV_GROWTH_I = 9 )
  448. INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  449. $ LA_LINRX_CWISE_I
  450. PARAMETER ( LA_LINRX_ITREF_I = 1,
  451. $ LA_LINRX_ITHRESH_I = 2 )
  452. PARAMETER ( LA_LINRX_CWISE_I = 3 )
  453. INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  454. $ LA_LINRX_RCOND_I
  455. PARAMETER ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  456. PARAMETER ( LA_LINRX_RCOND_I = 3 )
  457. * ..
  458. * .. External Subroutines ..
  459. EXTERNAL ZAXPY, ZCOPY, ZGETRS, ZGEMV, BLAS_ZGEMV_X,
  460. $ BLAS_ZGEMV2_X, ZLA_GEAMV, ZLA_WWADDW, DLAMCH,
  461. $ CHLA_TRANSTYPE, ZLA_LIN_BERR
  462. DOUBLE PRECISION DLAMCH
  463. CHARACTER CHLA_TRANSTYPE
  464. * ..
  465. * .. Intrinsic Functions ..
  466. INTRINSIC ABS, MAX, MIN
  467. * ..
  468. * .. Statement Functions ..
  469. DOUBLE PRECISION CABS1
  470. * ..
  471. * .. Statement Function Definitions ..
  472. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  473. * ..
  474. * .. Executable Statements ..
  475. *
  476. IF ( INFO.NE.0 ) RETURN
  477. TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
  478. EPS = DLAMCH( 'Epsilon' )
  479. HUGEVAL = DLAMCH( 'Overflow' )
  480. * Force HUGEVAL to Inf
  481. HUGEVAL = HUGEVAL * HUGEVAL
  482. * Using HUGEVAL may lead to spurious underflows.
  483. INCR_THRESH = DBLE( N ) * EPS
  484. *
  485. DO J = 1, NRHS
  486. Y_PREC_STATE = EXTRA_RESIDUAL
  487. IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
  488. DO I = 1, N
  489. Y_TAIL( I ) = 0.0D+0
  490. END DO
  491. END IF
  492. DXRAT = 0.0D+0
  493. DXRATMAX = 0.0D+0
  494. DZRAT = 0.0D+0
  495. DZRATMAX = 0.0D+0
  496. FINAL_DX_X = HUGEVAL
  497. FINAL_DZ_Z = HUGEVAL
  498. PREVNORMDX = HUGEVAL
  499. PREV_DZ_Z = HUGEVAL
  500. DZ_Z = HUGEVAL
  501. DX_X = HUGEVAL
  502. X_STATE = WORKING_STATE
  503. Z_STATE = UNSTABLE_STATE
  504. INCR_PREC = .FALSE.
  505. DO CNT = 1, ITHRESH
  506. *
  507. * Compute residual RES = B_s - op(A_s) * Y,
  508. * op(A) = A, A**T, or A**H depending on TRANS (and type).
  509. *
  510. CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
  511. IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
  512. CALL ZGEMV( TRANS, N, N, (-1.0D+0,0.0D+0), A, LDA,
  513. $ Y( 1, J ), 1, (1.0D+0,0.0D+0), RES, 1)
  514. ELSE IF (Y_PREC_STATE .EQ. EXTRA_RESIDUAL) THEN
  515. CALL BLAS_ZGEMV_X( TRANS_TYPE, N, N, (-1.0D+0,0.0D+0), A,
  516. $ LDA, Y( 1, J ), 1, (1.0D+0,0.0D+0),
  517. $ RES, 1, PREC_TYPE )
  518. ELSE
  519. CALL BLAS_ZGEMV2_X( TRANS_TYPE, N, N, (-1.0D+0,0.0D+0),
  520. $ A, LDA, Y(1, J), Y_TAIL, 1, (1.0D+0,0.0D+0), RES, 1,
  521. $ PREC_TYPE)
  522. END IF
  523. ! XXX: RES is no longer needed.
  524. CALL ZCOPY( N, RES, 1, DY, 1 )
  525. CALL ZGETRS( TRANS, N, 1, AF, LDAF, IPIV, DY, N, INFO )
  526. *
  527. * Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
  528. *
  529. NORMX = 0.0D+0
  530. NORMY = 0.0D+0
  531. NORMDX = 0.0D+0
  532. DZ_Z = 0.0D+0
  533. YMIN = HUGEVAL
  534. *
  535. DO I = 1, N
  536. YK = CABS1( Y( I, J ) )
  537. DYK = CABS1( DY( I ) )
  538. IF ( YK .NE. 0.0D+0 ) THEN
  539. DZ_Z = MAX( DZ_Z, DYK / YK )
  540. ELSE IF ( DYK .NE. 0.0D+0 ) THEN
  541. DZ_Z = HUGEVAL
  542. END IF
  543. YMIN = MIN( YMIN, YK )
  544. NORMY = MAX( NORMY, YK )
  545. IF ( COLEQU ) THEN
  546. NORMX = MAX( NORMX, YK * C( I ) )
  547. NORMDX = MAX( NORMDX, DYK * C( I ) )
  548. ELSE
  549. NORMX = NORMY
  550. NORMDX = MAX(NORMDX, DYK)
  551. END IF
  552. END DO
  553. IF ( NORMX .NE. 0.0D+0 ) THEN
  554. DX_X = NORMDX / NORMX
  555. ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
  556. DX_X = 0.0D+0
  557. ELSE
  558. DX_X = HUGEVAL
  559. END IF
  560. DXRAT = NORMDX / PREVNORMDX
  561. DZRAT = DZ_Z / PREV_DZ_Z
  562. *
  563. * Check termination criteria
  564. *
  565. IF (.NOT.IGNORE_CWISE
  566. $ .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
  567. $ .AND. Y_PREC_STATE .LT. EXTRA_Y )
  568. $ INCR_PREC = .TRUE.
  569. IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
  570. $ X_STATE = WORKING_STATE
  571. IF ( X_STATE .EQ. WORKING_STATE ) THEN
  572. IF (DX_X .LE. EPS) THEN
  573. X_STATE = CONV_STATE
  574. ELSE IF ( DXRAT .GT. RTHRESH ) THEN
  575. IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  576. INCR_PREC = .TRUE.
  577. ELSE
  578. X_STATE = NOPROG_STATE
  579. END IF
  580. ELSE
  581. IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
  582. END IF
  583. IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
  584. END IF
  585. IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
  586. $ Z_STATE = WORKING_STATE
  587. IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
  588. $ Z_STATE = WORKING_STATE
  589. IF ( Z_STATE .EQ. WORKING_STATE ) THEN
  590. IF ( DZ_Z .LE. EPS ) THEN
  591. Z_STATE = CONV_STATE
  592. ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
  593. Z_STATE = UNSTABLE_STATE
  594. DZRATMAX = 0.0D+0
  595. FINAL_DZ_Z = HUGEVAL
  596. ELSE IF ( DZRAT .GT. RTHRESH ) THEN
  597. IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  598. INCR_PREC = .TRUE.
  599. ELSE
  600. Z_STATE = NOPROG_STATE
  601. END IF
  602. ELSE
  603. IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
  604. END IF
  605. IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  606. END IF
  607. *
  608. * Exit if both normwise and componentwise stopped working,
  609. * but if componentwise is unstable, let it go at least two
  610. * iterations.
  611. *
  612. IF ( X_STATE.NE.WORKING_STATE ) THEN
  613. IF ( IGNORE_CWISE ) GOTO 666
  614. IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
  615. $ GOTO 666
  616. IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
  617. END IF
  618. IF ( INCR_PREC ) THEN
  619. INCR_PREC = .FALSE.
  620. Y_PREC_STATE = Y_PREC_STATE + 1
  621. DO I = 1, N
  622. Y_TAIL( I ) = 0.0D+0
  623. END DO
  624. END IF
  625. PREVNORMDX = NORMDX
  626. PREV_DZ_Z = DZ_Z
  627. *
  628. * Update soluton.
  629. *
  630. IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
  631. CALL ZAXPY( N, (1.0D+0,0.0D+0), DY, 1, Y(1,J), 1 )
  632. ELSE
  633. CALL ZLA_WWADDW( N, Y( 1, J ), Y_TAIL, DY )
  634. END IF
  635. END DO
  636. * Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't EXIT.
  637. 666 CONTINUE
  638. *
  639. * Set final_* when cnt hits ithresh
  640. *
  641. IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
  642. IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  643. *
  644. * Compute error bounds
  645. *
  646. IF (N_NORMS .GE. 1) THEN
  647. ERRS_N( J, LA_LINRX_ERR_I ) = FINAL_DX_X / (1 - DXRATMAX)
  648. END IF
  649. IF ( N_NORMS .GE. 2 ) THEN
  650. ERRS_C( J, LA_LINRX_ERR_I ) = FINAL_DZ_Z / (1 - DZRATMAX)
  651. END IF
  652. *
  653. * Compute componentwise relative backward error from formula
  654. * max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  655. * where abs(Z) is the componentwise absolute value of the matrix
  656. * or vector Z.
  657. *
  658. * Compute residual RES = B_s - op(A_s) * Y,
  659. * op(A) = A, A**T, or A**H depending on TRANS (and type).
  660. *
  661. CALL ZCOPY( N, B( 1, J ), 1, RES, 1 )
  662. CALL ZGEMV( TRANS, N, N, (-1.0D+0,0.0D+0), A, LDA, Y(1,J), 1,
  663. $ (1.0D+0,0.0D+0), RES, 1 )
  664. DO I = 1, N
  665. AYB( I ) = CABS1( B( I, J ) )
  666. END DO
  667. *
  668. * Compute abs(op(A_s))*abs(Y) + abs(B_s).
  669. *
  670. CALL ZLA_GEAMV ( TRANS_TYPE, N, N, 1.0D+0,
  671. $ A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
  672. CALL ZLA_LIN_BERR ( N, N, 1, RES, AYB, BERR_OUT( J ) )
  673. *
  674. * End of loop for each RHS.
  675. *
  676. END DO
  677. *
  678. RETURN
  679. END