You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgeesx.f 22 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651
  1. *> \brief <b> SGEESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SGEESX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgeesx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgeesx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgeesx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM,
  22. * WR, WI, VS, LDVS, RCONDE, RCONDV, WORK, LWORK,
  23. * IWORK, LIWORK, BWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBVS, SENSE, SORT
  27. * INTEGER INFO, LDA, LDVS, LIWORK, LWORK, N, SDIM
  28. * REAL RCONDE, RCONDV
  29. * ..
  30. * .. Array Arguments ..
  31. * LOGICAL BWORK( * )
  32. * INTEGER IWORK( * )
  33. * REAL A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
  34. * $ WR( * )
  35. * ..
  36. * .. Function Arguments ..
  37. * LOGICAL SELECT
  38. * EXTERNAL SELECT
  39. * ..
  40. *
  41. *
  42. *> \par Purpose:
  43. * =============
  44. *>
  45. *> \verbatim
  46. *>
  47. *> SGEESX computes for an N-by-N real nonsymmetric matrix A, the
  48. *> eigenvalues, the real Schur form T, and, optionally, the matrix of
  49. *> Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T).
  50. *>
  51. *> Optionally, it also orders the eigenvalues on the diagonal of the
  52. *> real Schur form so that selected eigenvalues are at the top left;
  53. *> computes a reciprocal condition number for the average of the
  54. *> selected eigenvalues (RCONDE); and computes a reciprocal condition
  55. *> number for the right invariant subspace corresponding to the
  56. *> selected eigenvalues (RCONDV). The leading columns of Z form an
  57. *> orthonormal basis for this invariant subspace.
  58. *>
  59. *> For further explanation of the reciprocal condition numbers RCONDE
  60. *> and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where
  61. *> these quantities are called s and sep respectively).
  62. *>
  63. *> A real matrix is in real Schur form if it is upper quasi-triangular
  64. *> with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in
  65. *> the form
  66. *> [ a b ]
  67. *> [ c a ]
  68. *>
  69. *> where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
  70. *> \endverbatim
  71. *
  72. * Arguments:
  73. * ==========
  74. *
  75. *> \param[in] JOBVS
  76. *> \verbatim
  77. *> JOBVS is CHARACTER*1
  78. *> = 'N': Schur vectors are not computed;
  79. *> = 'V': Schur vectors are computed.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] SORT
  83. *> \verbatim
  84. *> SORT is CHARACTER*1
  85. *> Specifies whether or not to order the eigenvalues on the
  86. *> diagonal of the Schur form.
  87. *> = 'N': Eigenvalues are not ordered;
  88. *> = 'S': Eigenvalues are ordered (see SELECT).
  89. *> \endverbatim
  90. *>
  91. *> \param[in] SELECT
  92. *> \verbatim
  93. *> SELECT is a LOGICAL FUNCTION of two REAL arguments
  94. *> SELECT must be declared EXTERNAL in the calling subroutine.
  95. *> If SORT = 'S', SELECT is used to select eigenvalues to sort
  96. *> to the top left of the Schur form.
  97. *> If SORT = 'N', SELECT is not referenced.
  98. *> An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
  99. *> SELECT(WR(j),WI(j)) is true; i.e., if either one of a
  100. *> complex conjugate pair of eigenvalues is selected, then both
  101. *> are. Note that a selected complex eigenvalue may no longer
  102. *> satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
  103. *> ordering may change the value of complex eigenvalues
  104. *> (especially if the eigenvalue is ill-conditioned); in this
  105. *> case INFO may be set to N+3 (see INFO below).
  106. *> \endverbatim
  107. *>
  108. *> \param[in] SENSE
  109. *> \verbatim
  110. *> SENSE is CHARACTER*1
  111. *> Determines which reciprocal condition numbers are computed.
  112. *> = 'N': None are computed;
  113. *> = 'E': Computed for average of selected eigenvalues only;
  114. *> = 'V': Computed for selected right invariant subspace only;
  115. *> = 'B': Computed for both.
  116. *> If SENSE = 'E', 'V' or 'B', SORT must equal 'S'.
  117. *> \endverbatim
  118. *>
  119. *> \param[in] N
  120. *> \verbatim
  121. *> N is INTEGER
  122. *> The order of the matrix A. N >= 0.
  123. *> \endverbatim
  124. *>
  125. *> \param[in,out] A
  126. *> \verbatim
  127. *> A is REAL array, dimension (LDA, N)
  128. *> On entry, the N-by-N matrix A.
  129. *> On exit, A is overwritten by its real Schur form T.
  130. *> \endverbatim
  131. *>
  132. *> \param[in] LDA
  133. *> \verbatim
  134. *> LDA is INTEGER
  135. *> The leading dimension of the array A. LDA >= max(1,N).
  136. *> \endverbatim
  137. *>
  138. *> \param[out] SDIM
  139. *> \verbatim
  140. *> SDIM is INTEGER
  141. *> If SORT = 'N', SDIM = 0.
  142. *> If SORT = 'S', SDIM = number of eigenvalues (after sorting)
  143. *> for which SELECT is true. (Complex conjugate
  144. *> pairs for which SELECT is true for either
  145. *> eigenvalue count as 2.)
  146. *> \endverbatim
  147. *>
  148. *> \param[out] WR
  149. *> \verbatim
  150. *> WR is REAL array, dimension (N)
  151. *> \endverbatim
  152. *>
  153. *> \param[out] WI
  154. *> \verbatim
  155. *> WI is REAL array, dimension (N)
  156. *> WR and WI contain the real and imaginary parts, respectively,
  157. *> of the computed eigenvalues, in the same order that they
  158. *> appear on the diagonal of the output Schur form T. Complex
  159. *> conjugate pairs of eigenvalues appear consecutively with the
  160. *> eigenvalue having the positive imaginary part first.
  161. *> \endverbatim
  162. *>
  163. *> \param[out] VS
  164. *> \verbatim
  165. *> VS is REAL array, dimension (LDVS,N)
  166. *> If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
  167. *> vectors.
  168. *> If JOBVS = 'N', VS is not referenced.
  169. *> \endverbatim
  170. *>
  171. *> \param[in] LDVS
  172. *> \verbatim
  173. *> LDVS is INTEGER
  174. *> The leading dimension of the array VS. LDVS >= 1, and if
  175. *> JOBVS = 'V', LDVS >= N.
  176. *> \endverbatim
  177. *>
  178. *> \param[out] RCONDE
  179. *> \verbatim
  180. *> RCONDE is REAL
  181. *> If SENSE = 'E' or 'B', RCONDE contains the reciprocal
  182. *> condition number for the average of the selected eigenvalues.
  183. *> Not referenced if SENSE = 'N' or 'V'.
  184. *> \endverbatim
  185. *>
  186. *> \param[out] RCONDV
  187. *> \verbatim
  188. *> RCONDV is REAL
  189. *> If SENSE = 'V' or 'B', RCONDV contains the reciprocal
  190. *> condition number for the selected right invariant subspace.
  191. *> Not referenced if SENSE = 'N' or 'E'.
  192. *> \endverbatim
  193. *>
  194. *> \param[out] WORK
  195. *> \verbatim
  196. *> WORK is REAL array, dimension (MAX(1,LWORK))
  197. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  198. *> \endverbatim
  199. *>
  200. *> \param[in] LWORK
  201. *> \verbatim
  202. *> LWORK is INTEGER
  203. *> The dimension of the array WORK. LWORK >= max(1,3*N).
  204. *> Also, if SENSE = 'E' or 'V' or 'B',
  205. *> LWORK >= N+2*SDIM*(N-SDIM), where SDIM is the number of
  206. *> selected eigenvalues computed by this routine. Note that
  207. *> N+2*SDIM*(N-SDIM) <= N+N*N/2. Note also that an error is only
  208. *> returned if LWORK < max(1,3*N), but if SENSE = 'E' or 'V' or
  209. *> 'B' this may not be large enough.
  210. *> For good performance, LWORK must generally be larger.
  211. *>
  212. *> If LWORK = -1, then a workspace query is assumed; the routine
  213. *> only calculates upper bounds on the optimal sizes of the
  214. *> arrays WORK and IWORK, returns these values as the first
  215. *> entries of the WORK and IWORK arrays, and no error messages
  216. *> related to LWORK or LIWORK are issued by XERBLA.
  217. *> \endverbatim
  218. *>
  219. *> \param[out] IWORK
  220. *> \verbatim
  221. *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  222. *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  223. *> \endverbatim
  224. *>
  225. *> \param[in] LIWORK
  226. *> \verbatim
  227. *> LIWORK is INTEGER
  228. *> The dimension of the array IWORK.
  229. *> LIWORK >= 1; if SENSE = 'V' or 'B', LIWORK >= SDIM*(N-SDIM).
  230. *> Note that SDIM*(N-SDIM) <= N*N/4. Note also that an error is
  231. *> only returned if LIWORK < 1, but if SENSE = 'V' or 'B' this
  232. *> may not be large enough.
  233. *>
  234. *> If LIWORK = -1, then a workspace query is assumed; the
  235. *> routine only calculates upper bounds on the optimal sizes of
  236. *> the arrays WORK and IWORK, returns these values as the first
  237. *> entries of the WORK and IWORK arrays, and no error messages
  238. *> related to LWORK or LIWORK are issued by XERBLA.
  239. *> \endverbatim
  240. *>
  241. *> \param[out] BWORK
  242. *> \verbatim
  243. *> BWORK is LOGICAL array, dimension (N)
  244. *> Not referenced if SORT = 'N'.
  245. *> \endverbatim
  246. *>
  247. *> \param[out] INFO
  248. *> \verbatim
  249. *> INFO is INTEGER
  250. *> = 0: successful exit
  251. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  252. *> > 0: if INFO = i, and i is
  253. *> <= N: the QR algorithm failed to compute all the
  254. *> eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
  255. *> contain those eigenvalues which have converged; if
  256. *> JOBVS = 'V', VS contains the transformation which
  257. *> reduces A to its partially converged Schur form.
  258. *> = N+1: the eigenvalues could not be reordered because some
  259. *> eigenvalues were too close to separate (the problem
  260. *> is very ill-conditioned);
  261. *> = N+2: after reordering, roundoff changed values of some
  262. *> complex eigenvalues so that leading eigenvalues in
  263. *> the Schur form no longer satisfy SELECT=.TRUE. This
  264. *> could also be caused by underflow due to scaling.
  265. *> \endverbatim
  266. *
  267. * Authors:
  268. * ========
  269. *
  270. *> \author Univ. of Tennessee
  271. *> \author Univ. of California Berkeley
  272. *> \author Univ. of Colorado Denver
  273. *> \author NAG Ltd.
  274. *
  275. *> \date June 2016
  276. *
  277. *> \ingroup realGEeigen
  278. *
  279. * =====================================================================
  280. SUBROUTINE SGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM,
  281. $ WR, WI, VS, LDVS, RCONDE, RCONDV, WORK, LWORK,
  282. $ IWORK, LIWORK, BWORK, INFO )
  283. *
  284. * -- LAPACK driver routine (version 3.7.0) --
  285. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  286. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  287. * June 2016
  288. *
  289. * .. Scalar Arguments ..
  290. CHARACTER JOBVS, SENSE, SORT
  291. INTEGER INFO, LDA, LDVS, LIWORK, LWORK, N, SDIM
  292. REAL RCONDE, RCONDV
  293. * ..
  294. * .. Array Arguments ..
  295. LOGICAL BWORK( * )
  296. INTEGER IWORK( * )
  297. REAL A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
  298. $ WR( * )
  299. * ..
  300. * .. Function Arguments ..
  301. LOGICAL SELECT
  302. EXTERNAL SELECT
  303. * ..
  304. *
  305. * =====================================================================
  306. *
  307. * .. Parameters ..
  308. REAL ZERO, ONE
  309. PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
  310. * ..
  311. * .. Local Scalars ..
  312. LOGICAL CURSL, LASTSL, LQUERY, LST2SL, SCALEA, WANTSB,
  313. $ WANTSE, WANTSN, WANTST, WANTSV, WANTVS
  314. INTEGER HSWORK, I, I1, I2, IBAL, ICOND, IERR, IEVAL,
  315. $ IHI, ILO, INXT, IP, ITAU, IWRK, LWRK, LIWRK,
  316. $ MAXWRK, MINWRK
  317. REAL ANRM, BIGNUM, CSCALE, EPS, SMLNUM
  318. * ..
  319. * .. Local Arrays ..
  320. REAL DUM( 1 )
  321. * ..
  322. * .. External Subroutines ..
  323. EXTERNAL SCOPY, SGEBAK, SGEBAL, SGEHRD, SHSEQR, SLABAD,
  324. $ SLACPY, SLASCL, SORGHR, SSWAP, STRSEN, XERBLA
  325. * ..
  326. * .. External Functions ..
  327. LOGICAL LSAME
  328. INTEGER ILAENV
  329. REAL SLAMCH, SLANGE
  330. EXTERNAL LSAME, ILAENV, SLAMCH, SLANGE
  331. * ..
  332. * .. Intrinsic Functions ..
  333. INTRINSIC MAX, SQRT
  334. * ..
  335. * .. Executable Statements ..
  336. *
  337. * Test the input arguments
  338. *
  339. INFO = 0
  340. WANTVS = LSAME( JOBVS, 'V' )
  341. WANTST = LSAME( SORT, 'S' )
  342. WANTSN = LSAME( SENSE, 'N' )
  343. WANTSE = LSAME( SENSE, 'E' )
  344. WANTSV = LSAME( SENSE, 'V' )
  345. WANTSB = LSAME( SENSE, 'B' )
  346. LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  347. *
  348. IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
  349. INFO = -1
  350. ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
  351. INFO = -2
  352. ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
  353. $ ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
  354. INFO = -4
  355. ELSE IF( N.LT.0 ) THEN
  356. INFO = -5
  357. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  358. INFO = -7
  359. ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
  360. INFO = -12
  361. END IF
  362. *
  363. * Compute workspace
  364. * (Note: Comments in the code beginning "RWorkspace:" describe the
  365. * minimal amount of real workspace needed at that point in the
  366. * code, as well as the preferred amount for good performance.
  367. * IWorkspace refers to integer workspace.
  368. * NB refers to the optimal block size for the immediately
  369. * following subroutine, as returned by ILAENV.
  370. * HSWORK refers to the workspace preferred by SHSEQR, as
  371. * calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
  372. * the worst case.
  373. * If SENSE = 'E', 'V' or 'B', then the amount of workspace needed
  374. * depends on SDIM, which is computed by the routine STRSEN later
  375. * in the code.)
  376. *
  377. IF( INFO.EQ.0 ) THEN
  378. LIWRK = 1
  379. IF( N.EQ.0 ) THEN
  380. MINWRK = 1
  381. LWRK = 1
  382. ELSE
  383. MAXWRK = 2*N + N*ILAENV( 1, 'SGEHRD', ' ', N, 1, N, 0 )
  384. MINWRK = 3*N
  385. *
  386. CALL SHSEQR( 'S', JOBVS, N, 1, N, A, LDA, WR, WI, VS, LDVS,
  387. $ WORK, -1, IEVAL )
  388. HSWORK = WORK( 1 )
  389. *
  390. IF( .NOT.WANTVS ) THEN
  391. MAXWRK = MAX( MAXWRK, N + HSWORK )
  392. ELSE
  393. MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
  394. $ 'SORGHR', ' ', N, 1, N, -1 ) )
  395. MAXWRK = MAX( MAXWRK, N + HSWORK )
  396. END IF
  397. LWRK = MAXWRK
  398. IF( .NOT.WANTSN )
  399. $ LWRK = MAX( LWRK, N + ( N*N )/2 )
  400. IF( WANTSV .OR. WANTSB )
  401. $ LIWRK = ( N*N )/4
  402. END IF
  403. IWORK( 1 ) = LIWRK
  404. WORK( 1 ) = LWRK
  405. *
  406. IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  407. INFO = -16
  408. ELSE IF( LIWORK.LT.1 .AND. .NOT.LQUERY ) THEN
  409. INFO = -18
  410. END IF
  411. END IF
  412. *
  413. IF( INFO.NE.0 ) THEN
  414. CALL XERBLA( 'SGEESX', -INFO )
  415. RETURN
  416. ELSE IF( LQUERY ) THEN
  417. RETURN
  418. END IF
  419. *
  420. * Quick return if possible
  421. *
  422. IF( N.EQ.0 ) THEN
  423. SDIM = 0
  424. RETURN
  425. END IF
  426. *
  427. * Get machine constants
  428. *
  429. EPS = SLAMCH( 'P' )
  430. SMLNUM = SLAMCH( 'S' )
  431. BIGNUM = ONE / SMLNUM
  432. CALL SLABAD( SMLNUM, BIGNUM )
  433. SMLNUM = SQRT( SMLNUM ) / EPS
  434. BIGNUM = ONE / SMLNUM
  435. *
  436. * Scale A if max element outside range [SMLNUM,BIGNUM]
  437. *
  438. ANRM = SLANGE( 'M', N, N, A, LDA, DUM )
  439. SCALEA = .FALSE.
  440. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  441. SCALEA = .TRUE.
  442. CSCALE = SMLNUM
  443. ELSE IF( ANRM.GT.BIGNUM ) THEN
  444. SCALEA = .TRUE.
  445. CSCALE = BIGNUM
  446. END IF
  447. IF( SCALEA )
  448. $ CALL SLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
  449. *
  450. * Permute the matrix to make it more nearly triangular
  451. * (RWorkspace: need N)
  452. *
  453. IBAL = 1
  454. CALL SGEBAL( 'P', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
  455. *
  456. * Reduce to upper Hessenberg form
  457. * (RWorkspace: need 3*N, prefer 2*N+N*NB)
  458. *
  459. ITAU = N + IBAL
  460. IWRK = N + ITAU
  461. CALL SGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
  462. $ LWORK-IWRK+1, IERR )
  463. *
  464. IF( WANTVS ) THEN
  465. *
  466. * Copy Householder vectors to VS
  467. *
  468. CALL SLACPY( 'L', N, N, A, LDA, VS, LDVS )
  469. *
  470. * Generate orthogonal matrix in VS
  471. * (RWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  472. *
  473. CALL SORGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
  474. $ LWORK-IWRK+1, IERR )
  475. END IF
  476. *
  477. SDIM = 0
  478. *
  479. * Perform QR iteration, accumulating Schur vectors in VS if desired
  480. * (RWorkspace: need N+1, prefer N+HSWORK (see comments) )
  481. *
  482. IWRK = ITAU
  483. CALL SHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, WR, WI, VS, LDVS,
  484. $ WORK( IWRK ), LWORK-IWRK+1, IEVAL )
  485. IF( IEVAL.GT.0 )
  486. $ INFO = IEVAL
  487. *
  488. * Sort eigenvalues if desired
  489. *
  490. IF( WANTST .AND. INFO.EQ.0 ) THEN
  491. IF( SCALEA ) THEN
  492. CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WR, N, IERR )
  493. CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WI, N, IERR )
  494. END IF
  495. DO 10 I = 1, N
  496. BWORK( I ) = SELECT( WR( I ), WI( I ) )
  497. 10 CONTINUE
  498. *
  499. * Reorder eigenvalues, transform Schur vectors, and compute
  500. * reciprocal condition numbers
  501. * (RWorkspace: if SENSE is not 'N', need N+2*SDIM*(N-SDIM)
  502. * otherwise, need N )
  503. * (IWorkspace: if SENSE is 'V' or 'B', need SDIM*(N-SDIM)
  504. * otherwise, need 0 )
  505. *
  506. CALL STRSEN( SENSE, JOBVS, BWORK, N, A, LDA, VS, LDVS, WR, WI,
  507. $ SDIM, RCONDE, RCONDV, WORK( IWRK ), LWORK-IWRK+1,
  508. $ IWORK, LIWORK, ICOND )
  509. IF( .NOT.WANTSN )
  510. $ MAXWRK = MAX( MAXWRK, N+2*SDIM*( N-SDIM ) )
  511. IF( ICOND.EQ.-15 ) THEN
  512. *
  513. * Not enough real workspace
  514. *
  515. INFO = -16
  516. ELSE IF( ICOND.EQ.-17 ) THEN
  517. *
  518. * Not enough integer workspace
  519. *
  520. INFO = -18
  521. ELSE IF( ICOND.GT.0 ) THEN
  522. *
  523. * STRSEN failed to reorder or to restore standard Schur form
  524. *
  525. INFO = ICOND + N
  526. END IF
  527. END IF
  528. *
  529. IF( WANTVS ) THEN
  530. *
  531. * Undo balancing
  532. * (RWorkspace: need N)
  533. *
  534. CALL SGEBAK( 'P', 'R', N, ILO, IHI, WORK( IBAL ), N, VS, LDVS,
  535. $ IERR )
  536. END IF
  537. *
  538. IF( SCALEA ) THEN
  539. *
  540. * Undo scaling for the Schur form of A
  541. *
  542. CALL SLASCL( 'H', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
  543. CALL SCOPY( N, A, LDA+1, WR, 1 )
  544. IF( ( WANTSV .OR. WANTSB ) .AND. INFO.EQ.0 ) THEN
  545. DUM( 1 ) = RCONDV
  546. CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
  547. RCONDV = DUM( 1 )
  548. END IF
  549. IF( CSCALE.EQ.SMLNUM ) THEN
  550. *
  551. * If scaling back towards underflow, adjust WI if an
  552. * offdiagonal element of a 2-by-2 block in the Schur form
  553. * underflows.
  554. *
  555. IF( IEVAL.GT.0 ) THEN
  556. I1 = IEVAL + 1
  557. I2 = IHI - 1
  558. CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
  559. $ IERR )
  560. ELSE IF( WANTST ) THEN
  561. I1 = 1
  562. I2 = N - 1
  563. ELSE
  564. I1 = ILO
  565. I2 = IHI - 1
  566. END IF
  567. INXT = I1 - 1
  568. DO 20 I = I1, I2
  569. IF( I.LT.INXT )
  570. $ GO TO 20
  571. IF( WI( I ).EQ.ZERO ) THEN
  572. INXT = I + 1
  573. ELSE
  574. IF( A( I+1, I ).EQ.ZERO ) THEN
  575. WI( I ) = ZERO
  576. WI( I+1 ) = ZERO
  577. ELSE IF( A( I+1, I ).NE.ZERO .AND. A( I, I+1 ).EQ.
  578. $ ZERO ) THEN
  579. WI( I ) = ZERO
  580. WI( I+1 ) = ZERO
  581. IF( I.GT.1 )
  582. $ CALL SSWAP( I-1, A( 1, I ), 1, A( 1, I+1 ), 1 )
  583. IF( N.GT.I+1 )
  584. $ CALL SSWAP( N-I-1, A( I, I+2 ), LDA,
  585. $ A( I+1, I+2 ), LDA )
  586. IF( WANTVS ) THEN
  587. CALL SSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 )
  588. END IF
  589. A( I, I+1 ) = A( I+1, I )
  590. A( I+1, I ) = ZERO
  591. END IF
  592. INXT = I + 2
  593. END IF
  594. 20 CONTINUE
  595. END IF
  596. CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N-IEVAL, 1,
  597. $ WI( IEVAL+1 ), MAX( N-IEVAL, 1 ), IERR )
  598. END IF
  599. *
  600. IF( WANTST .AND. INFO.EQ.0 ) THEN
  601. *
  602. * Check if reordering successful
  603. *
  604. LASTSL = .TRUE.
  605. LST2SL = .TRUE.
  606. SDIM = 0
  607. IP = 0
  608. DO 30 I = 1, N
  609. CURSL = SELECT( WR( I ), WI( I ) )
  610. IF( WI( I ).EQ.ZERO ) THEN
  611. IF( CURSL )
  612. $ SDIM = SDIM + 1
  613. IP = 0
  614. IF( CURSL .AND. .NOT.LASTSL )
  615. $ INFO = N + 2
  616. ELSE
  617. IF( IP.EQ.1 ) THEN
  618. *
  619. * Last eigenvalue of conjugate pair
  620. *
  621. CURSL = CURSL .OR. LASTSL
  622. LASTSL = CURSL
  623. IF( CURSL )
  624. $ SDIM = SDIM + 2
  625. IP = -1
  626. IF( CURSL .AND. .NOT.LST2SL )
  627. $ INFO = N + 2
  628. ELSE
  629. *
  630. * First eigenvalue of conjugate pair
  631. *
  632. IP = 1
  633. END IF
  634. END IF
  635. LST2SL = LASTSL
  636. LASTSL = CURSL
  637. 30 CONTINUE
  638. END IF
  639. *
  640. WORK( 1 ) = MAXWRK
  641. IF( WANTSV .OR. WANTSB ) THEN
  642. IWORK( 1 ) = SDIM*(N-SDIM)
  643. ELSE
  644. IWORK( 1 ) = 1
  645. END IF
  646. *
  647. RETURN
  648. *
  649. * End of SGEESX
  650. *
  651. END