You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlansp.f 8.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283
  1. *> \brief \b DLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLANSP + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlansp.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlansp.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlansp.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION DLANSP( NORM, UPLO, N, AP, WORK )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER NORM, UPLO
  25. * INTEGER N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION AP( * ), WORK( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DLANSP returns the value of the one norm, or the Frobenius norm, or
  38. *> the infinity norm, or the element of largest absolute value of a
  39. *> real symmetric matrix A, supplied in packed form.
  40. *> \endverbatim
  41. *>
  42. *> \return DLANSP
  43. *> \verbatim
  44. *>
  45. *> DLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  46. *> (
  47. *> ( norm1(A), NORM = '1', 'O' or 'o'
  48. *> (
  49. *> ( normI(A), NORM = 'I' or 'i'
  50. *> (
  51. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  52. *>
  53. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  54. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  55. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  56. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  57. *> \endverbatim
  58. *
  59. * Arguments:
  60. * ==========
  61. *
  62. *> \param[in] NORM
  63. *> \verbatim
  64. *> NORM is CHARACTER*1
  65. *> Specifies the value to be returned in DLANSP as described
  66. *> above.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] UPLO
  70. *> \verbatim
  71. *> UPLO is CHARACTER*1
  72. *> Specifies whether the upper or lower triangular part of the
  73. *> symmetric matrix A is supplied.
  74. *> = 'U': Upper triangular part of A is supplied
  75. *> = 'L': Lower triangular part of A is supplied
  76. *> \endverbatim
  77. *>
  78. *> \param[in] N
  79. *> \verbatim
  80. *> N is INTEGER
  81. *> The order of the matrix A. N >= 0. When N = 0, DLANSP is
  82. *> set to zero.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] AP
  86. *> \verbatim
  87. *> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
  88. *> The upper or lower triangle of the symmetric matrix A, packed
  89. *> columnwise in a linear array. The j-th column of A is stored
  90. *> in the array AP as follows:
  91. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  92. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  93. *> \endverbatim
  94. *>
  95. *> \param[out] WORK
  96. *> \verbatim
  97. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  98. *> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
  99. *> WORK is not referenced.
  100. *> \endverbatim
  101. *
  102. * Authors:
  103. * ========
  104. *
  105. *> \author Univ. of Tennessee
  106. *> \author Univ. of California Berkeley
  107. *> \author Univ. of Colorado Denver
  108. *> \author NAG Ltd.
  109. *
  110. *> \date December 2016
  111. *
  112. *> \ingroup doubleOTHERauxiliary
  113. *
  114. * =====================================================================
  115. DOUBLE PRECISION FUNCTION DLANSP( NORM, UPLO, N, AP, WORK )
  116. *
  117. * -- LAPACK auxiliary routine (version 3.7.0) --
  118. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  119. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  120. * December 2016
  121. *
  122. IMPLICIT NONE
  123. * .. Scalar Arguments ..
  124. CHARACTER NORM, UPLO
  125. INTEGER N
  126. * ..
  127. * .. Array Arguments ..
  128. DOUBLE PRECISION AP( * ), WORK( * )
  129. * ..
  130. *
  131. * =====================================================================
  132. *
  133. * .. Parameters ..
  134. DOUBLE PRECISION ONE, ZERO
  135. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  136. * ..
  137. * .. Local Scalars ..
  138. INTEGER I, J, K
  139. DOUBLE PRECISION ABSA, SUM, VALUE
  140. * ..
  141. * .. Local Arrays ..
  142. DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 )
  143. * ..
  144. * .. External Functions ..
  145. LOGICAL LSAME, DISNAN
  146. EXTERNAL LSAME, DISNAN
  147. * ..
  148. * .. External Subroutines ..
  149. EXTERNAL DLASSQ, DCOMBSSQ
  150. * ..
  151. * .. Intrinsic Functions ..
  152. INTRINSIC ABS, SQRT
  153. * ..
  154. * .. Executable Statements ..
  155. *
  156. IF( N.EQ.0 ) THEN
  157. VALUE = ZERO
  158. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  159. *
  160. * Find max(abs(A(i,j))).
  161. *
  162. VALUE = ZERO
  163. IF( LSAME( UPLO, 'U' ) ) THEN
  164. K = 1
  165. DO 20 J = 1, N
  166. DO 10 I = K, K + J - 1
  167. SUM = ABS( AP( I ) )
  168. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  169. 10 CONTINUE
  170. K = K + J
  171. 20 CONTINUE
  172. ELSE
  173. K = 1
  174. DO 40 J = 1, N
  175. DO 30 I = K, K + N - J
  176. SUM = ABS( AP( I ) )
  177. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  178. 30 CONTINUE
  179. K = K + N - J + 1
  180. 40 CONTINUE
  181. END IF
  182. ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
  183. $ ( NORM.EQ.'1' ) ) THEN
  184. *
  185. * Find normI(A) ( = norm1(A), since A is symmetric).
  186. *
  187. VALUE = ZERO
  188. K = 1
  189. IF( LSAME( UPLO, 'U' ) ) THEN
  190. DO 60 J = 1, N
  191. SUM = ZERO
  192. DO 50 I = 1, J - 1
  193. ABSA = ABS( AP( K ) )
  194. SUM = SUM + ABSA
  195. WORK( I ) = WORK( I ) + ABSA
  196. K = K + 1
  197. 50 CONTINUE
  198. WORK( J ) = SUM + ABS( AP( K ) )
  199. K = K + 1
  200. 60 CONTINUE
  201. DO 70 I = 1, N
  202. SUM = WORK( I )
  203. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  204. 70 CONTINUE
  205. ELSE
  206. DO 80 I = 1, N
  207. WORK( I ) = ZERO
  208. 80 CONTINUE
  209. DO 100 J = 1, N
  210. SUM = WORK( J ) + ABS( AP( K ) )
  211. K = K + 1
  212. DO 90 I = J + 1, N
  213. ABSA = ABS( AP( K ) )
  214. SUM = SUM + ABSA
  215. WORK( I ) = WORK( I ) + ABSA
  216. K = K + 1
  217. 90 CONTINUE
  218. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  219. 100 CONTINUE
  220. END IF
  221. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  222. *
  223. * Find normF(A).
  224. * SSQ(1) is scale
  225. * SSQ(2) is sum-of-squares
  226. * For better accuracy, sum each column separately.
  227. *
  228. SSQ( 1 ) = ZERO
  229. SSQ( 2 ) = ONE
  230. *
  231. * Sum off-diagonals
  232. *
  233. K = 2
  234. IF( LSAME( UPLO, 'U' ) ) THEN
  235. DO 110 J = 2, N
  236. COLSSQ( 1 ) = ZERO
  237. COLSSQ( 2 ) = ONE
  238. CALL DLASSQ( J-1, AP( K ), 1, COLSSQ( 1 ), COLSSQ( 2 ) )
  239. CALL DCOMBSSQ( SSQ, COLSSQ )
  240. K = K + J
  241. 110 CONTINUE
  242. ELSE
  243. DO 120 J = 1, N - 1
  244. COLSSQ( 1 ) = ZERO
  245. COLSSQ( 2 ) = ONE
  246. CALL DLASSQ( N-J, AP( K ), 1, COLSSQ( 1 ), COLSSQ( 2 ) )
  247. CALL DCOMBSSQ( SSQ, COLSSQ )
  248. K = K + N - J + 1
  249. 120 CONTINUE
  250. END IF
  251. SSQ( 2 ) = 2*SSQ( 2 )
  252. *
  253. * Sum diagonal
  254. *
  255. K = 1
  256. COLSSQ( 1 ) = ZERO
  257. COLSSQ( 2 ) = ONE
  258. DO 130 I = 1, N
  259. IF( AP( K ).NE.ZERO ) THEN
  260. ABSA = ABS( AP( K ) )
  261. IF( COLSSQ( 1 ).LT.ABSA ) THEN
  262. COLSSQ( 2 ) = ONE + COLSSQ(2)*( COLSSQ(1) / ABSA )**2
  263. COLSSQ( 1 ) = ABSA
  264. ELSE
  265. COLSSQ( 2 ) = COLSSQ( 2 ) + ( ABSA / COLSSQ( 1 ) )**2
  266. END IF
  267. END IF
  268. IF( LSAME( UPLO, 'U' ) ) THEN
  269. K = K + I + 1
  270. ELSE
  271. K = K + N - I + 1
  272. END IF
  273. 130 CONTINUE
  274. CALL DCOMBSSQ( SSQ, COLSSQ )
  275. VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
  276. END IF
  277. *
  278. DLANSP = VALUE
  279. RETURN
  280. *
  281. * End of DLANSP
  282. *
  283. END