You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cungrq.f 8.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297
  1. *> \brief \b CUNGRQ
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CUNGRQ + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cungrq.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cungrq.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cungrq.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CUNGRQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, K, LDA, LWORK, M, N
  25. * ..
  26. * .. Array Arguments ..
  27. * COMPLEX A( LDA, * ), TAU( * ), WORK( * )
  28. * ..
  29. *
  30. *
  31. *> \par Purpose:
  32. * =============
  33. *>
  34. *> \verbatim
  35. *>
  36. *> CUNGRQ generates an M-by-N complex matrix Q with orthonormal rows,
  37. *> which is defined as the last M rows of a product of K elementary
  38. *> reflectors of order N
  39. *>
  40. *> Q = H(1)**H H(2)**H . . . H(k)**H
  41. *>
  42. *> as returned by CGERQF.
  43. *> \endverbatim
  44. *
  45. * Arguments:
  46. * ==========
  47. *
  48. *> \param[in] M
  49. *> \verbatim
  50. *> M is INTEGER
  51. *> The number of rows of the matrix Q. M >= 0.
  52. *> \endverbatim
  53. *>
  54. *> \param[in] N
  55. *> \verbatim
  56. *> N is INTEGER
  57. *> The number of columns of the matrix Q. N >= M.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] K
  61. *> \verbatim
  62. *> K is INTEGER
  63. *> The number of elementary reflectors whose product defines the
  64. *> matrix Q. M >= K >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in,out] A
  68. *> \verbatim
  69. *> A is COMPLEX array, dimension (LDA,N)
  70. *> On entry, the (m-k+i)-th row must contain the vector which
  71. *> defines the elementary reflector H(i), for i = 1,2,...,k, as
  72. *> returned by CGERQF in the last k rows of its array argument
  73. *> A.
  74. *> On exit, the M-by-N matrix Q.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] LDA
  78. *> \verbatim
  79. *> LDA is INTEGER
  80. *> The first dimension of the array A. LDA >= max(1,M).
  81. *> \endverbatim
  82. *>
  83. *> \param[in] TAU
  84. *> \verbatim
  85. *> TAU is COMPLEX array, dimension (K)
  86. *> TAU(i) must contain the scalar factor of the elementary
  87. *> reflector H(i), as returned by CGERQF.
  88. *> \endverbatim
  89. *>
  90. *> \param[out] WORK
  91. *> \verbatim
  92. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  93. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  94. *> \endverbatim
  95. *>
  96. *> \param[in] LWORK
  97. *> \verbatim
  98. *> LWORK is INTEGER
  99. *> The dimension of the array WORK. LWORK >= max(1,M).
  100. *> For optimum performance LWORK >= M*NB, where NB is the
  101. *> optimal blocksize.
  102. *>
  103. *> If LWORK = -1, then a workspace query is assumed; the routine
  104. *> only calculates the optimal size of the WORK array, returns
  105. *> this value as the first entry of the WORK array, and no error
  106. *> message related to LWORK is issued by XERBLA.
  107. *> \endverbatim
  108. *>
  109. *> \param[out] INFO
  110. *> \verbatim
  111. *> INFO is INTEGER
  112. *> = 0: successful exit
  113. *> < 0: if INFO = -i, the i-th argument has an illegal value
  114. *> \endverbatim
  115. *
  116. * Authors:
  117. * ========
  118. *
  119. *> \author Univ. of Tennessee
  120. *> \author Univ. of California Berkeley
  121. *> \author Univ. of Colorado Denver
  122. *> \author NAG Ltd.
  123. *
  124. *> \date December 2016
  125. *
  126. *> \ingroup complexOTHERcomputational
  127. *
  128. * =====================================================================
  129. SUBROUTINE CUNGRQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
  130. *
  131. * -- LAPACK computational routine (version 3.7.0) --
  132. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  133. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  134. * December 2016
  135. *
  136. * .. Scalar Arguments ..
  137. INTEGER INFO, K, LDA, LWORK, M, N
  138. * ..
  139. * .. Array Arguments ..
  140. COMPLEX A( LDA, * ), TAU( * ), WORK( * )
  141. * ..
  142. *
  143. * =====================================================================
  144. *
  145. * .. Parameters ..
  146. COMPLEX ZERO
  147. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
  148. * ..
  149. * .. Local Scalars ..
  150. LOGICAL LQUERY
  151. INTEGER I, IB, II, IINFO, IWS, J, KK, L, LDWORK,
  152. $ LWKOPT, NB, NBMIN, NX
  153. * ..
  154. * .. External Subroutines ..
  155. EXTERNAL CLARFB, CLARFT, CUNGR2, XERBLA
  156. * ..
  157. * .. Intrinsic Functions ..
  158. INTRINSIC MAX, MIN
  159. * ..
  160. * .. External Functions ..
  161. INTEGER ILAENV
  162. EXTERNAL ILAENV
  163. * ..
  164. * .. Executable Statements ..
  165. *
  166. * Test the input arguments
  167. *
  168. INFO = 0
  169. LQUERY = ( LWORK.EQ.-1 )
  170. IF( M.LT.0 ) THEN
  171. INFO = -1
  172. ELSE IF( N.LT.M ) THEN
  173. INFO = -2
  174. ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
  175. INFO = -3
  176. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  177. INFO = -5
  178. END IF
  179. *
  180. IF( INFO.EQ.0 ) THEN
  181. IF( M.LE.0 ) THEN
  182. LWKOPT = 1
  183. ELSE
  184. NB = ILAENV( 1, 'CUNGRQ', ' ', M, N, K, -1 )
  185. LWKOPT = M*NB
  186. END IF
  187. WORK( 1 ) = LWKOPT
  188. *
  189. IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
  190. INFO = -8
  191. END IF
  192. END IF
  193. *
  194. IF( INFO.NE.0 ) THEN
  195. CALL XERBLA( 'CUNGRQ', -INFO )
  196. RETURN
  197. ELSE IF( LQUERY ) THEN
  198. RETURN
  199. END IF
  200. *
  201. * Quick return if possible
  202. *
  203. IF( M.LE.0 ) THEN
  204. RETURN
  205. END IF
  206. *
  207. NBMIN = 2
  208. NX = 0
  209. IWS = M
  210. IF( NB.GT.1 .AND. NB.LT.K ) THEN
  211. *
  212. * Determine when to cross over from blocked to unblocked code.
  213. *
  214. NX = MAX( 0, ILAENV( 3, 'CUNGRQ', ' ', M, N, K, -1 ) )
  215. IF( NX.LT.K ) THEN
  216. *
  217. * Determine if workspace is large enough for blocked code.
  218. *
  219. LDWORK = M
  220. IWS = LDWORK*NB
  221. IF( LWORK.LT.IWS ) THEN
  222. *
  223. * Not enough workspace to use optimal NB: reduce NB and
  224. * determine the minimum value of NB.
  225. *
  226. NB = LWORK / LDWORK
  227. NBMIN = MAX( 2, ILAENV( 2, 'CUNGRQ', ' ', M, N, K, -1 ) )
  228. END IF
  229. END IF
  230. END IF
  231. *
  232. IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
  233. *
  234. * Use blocked code after the first block.
  235. * The last kk rows are handled by the block method.
  236. *
  237. KK = MIN( K, ( ( K-NX+NB-1 ) / NB )*NB )
  238. *
  239. * Set A(1:m-kk,n-kk+1:n) to zero.
  240. *
  241. DO 20 J = N - KK + 1, N
  242. DO 10 I = 1, M - KK
  243. A( I, J ) = ZERO
  244. 10 CONTINUE
  245. 20 CONTINUE
  246. ELSE
  247. KK = 0
  248. END IF
  249. *
  250. * Use unblocked code for the first or only block.
  251. *
  252. CALL CUNGR2( M-KK, N-KK, K-KK, A, LDA, TAU, WORK, IINFO )
  253. *
  254. IF( KK.GT.0 ) THEN
  255. *
  256. * Use blocked code
  257. *
  258. DO 50 I = K - KK + 1, K, NB
  259. IB = MIN( NB, K-I+1 )
  260. II = M - K + I
  261. IF( II.GT.1 ) THEN
  262. *
  263. * Form the triangular factor of the block reflector
  264. * H = H(i+ib-1) . . . H(i+1) H(i)
  265. *
  266. CALL CLARFT( 'Backward', 'Rowwise', N-K+I+IB-1, IB,
  267. $ A( II, 1 ), LDA, TAU( I ), WORK, LDWORK )
  268. *
  269. * Apply H**H to A(1:m-k+i-1,1:n-k+i+ib-1) from the right
  270. *
  271. CALL CLARFB( 'Right', 'Conjugate transpose', 'Backward',
  272. $ 'Rowwise', II-1, N-K+I+IB-1, IB, A( II, 1 ),
  273. $ LDA, WORK, LDWORK, A, LDA, WORK( IB+1 ),
  274. $ LDWORK )
  275. END IF
  276. *
  277. * Apply H**H to columns 1:n-k+i+ib-1 of current block
  278. *
  279. CALL CUNGR2( IB, N-K+I+IB-1, IB, A( II, 1 ), LDA, TAU( I ),
  280. $ WORK, IINFO )
  281. *
  282. * Set columns n-k+i+ib:n of current block to zero
  283. *
  284. DO 40 L = N - K + I + IB, N
  285. DO 30 J = II, II + IB - 1
  286. A( J, L ) = ZERO
  287. 30 CONTINUE
  288. 40 CONTINUE
  289. 50 CONTINUE
  290. END IF
  291. *
  292. WORK( 1 ) = IWS
  293. RETURN
  294. *
  295. * End of CUNGRQ
  296. *
  297. END