You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clalsd.f 23 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690
  1. *> \brief \b CLALSD uses the singular value decomposition of A to solve the least squares problem.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLALSD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clalsd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clalsd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clalsd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
  22. * RANK, WORK, RWORK, IWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO
  26. * INTEGER INFO, LDB, N, NRHS, RANK, SMLSIZ
  27. * REAL RCOND
  28. * ..
  29. * .. Array Arguments ..
  30. * INTEGER IWORK( * )
  31. * REAL D( * ), E( * ), RWORK( * )
  32. * COMPLEX B( LDB, * ), WORK( * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> CLALSD uses the singular value decomposition of A to solve the least
  42. *> squares problem of finding X to minimize the Euclidean norm of each
  43. *> column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
  44. *> are N-by-NRHS. The solution X overwrites B.
  45. *>
  46. *> The singular values of A smaller than RCOND times the largest
  47. *> singular value are treated as zero in solving the least squares
  48. *> problem; in this case a minimum norm solution is returned.
  49. *> The actual singular values are returned in D in ascending order.
  50. *>
  51. *> This code makes very mild assumptions about floating point
  52. *> arithmetic. It will work on machines with a guard digit in
  53. *> add/subtract, or on those binary machines without guard digits
  54. *> which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
  55. *> It could conceivably fail on hexadecimal or decimal machines
  56. *> without guard digits, but we know of none.
  57. *> \endverbatim
  58. *
  59. * Arguments:
  60. * ==========
  61. *
  62. *> \param[in] UPLO
  63. *> \verbatim
  64. *> UPLO is CHARACTER*1
  65. *> = 'U': D and E define an upper bidiagonal matrix.
  66. *> = 'L': D and E define a lower bidiagonal matrix.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] SMLSIZ
  70. *> \verbatim
  71. *> SMLSIZ is INTEGER
  72. *> The maximum size of the subproblems at the bottom of the
  73. *> computation tree.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] N
  77. *> \verbatim
  78. *> N is INTEGER
  79. *> The dimension of the bidiagonal matrix. N >= 0.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] NRHS
  83. *> \verbatim
  84. *> NRHS is INTEGER
  85. *> The number of columns of B. NRHS must be at least 1.
  86. *> \endverbatim
  87. *>
  88. *> \param[in,out] D
  89. *> \verbatim
  90. *> D is REAL array, dimension (N)
  91. *> On entry D contains the main diagonal of the bidiagonal
  92. *> matrix. On exit, if INFO = 0, D contains its singular values.
  93. *> \endverbatim
  94. *>
  95. *> \param[in,out] E
  96. *> \verbatim
  97. *> E is REAL array, dimension (N-1)
  98. *> Contains the super-diagonal entries of the bidiagonal matrix.
  99. *> On exit, E has been destroyed.
  100. *> \endverbatim
  101. *>
  102. *> \param[in,out] B
  103. *> \verbatim
  104. *> B is COMPLEX array, dimension (LDB,NRHS)
  105. *> On input, B contains the right hand sides of the least
  106. *> squares problem. On output, B contains the solution X.
  107. *> \endverbatim
  108. *>
  109. *> \param[in] LDB
  110. *> \verbatim
  111. *> LDB is INTEGER
  112. *> The leading dimension of B in the calling subprogram.
  113. *> LDB must be at least max(1,N).
  114. *> \endverbatim
  115. *>
  116. *> \param[in] RCOND
  117. *> \verbatim
  118. *> RCOND is REAL
  119. *> The singular values of A less than or equal to RCOND times
  120. *> the largest singular value are treated as zero in solving
  121. *> the least squares problem. If RCOND is negative,
  122. *> machine precision is used instead.
  123. *> For example, if diag(S)*X=B were the least squares problem,
  124. *> where diag(S) is a diagonal matrix of singular values, the
  125. *> solution would be X(i) = B(i) / S(i) if S(i) is greater than
  126. *> RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
  127. *> RCOND*max(S).
  128. *> \endverbatim
  129. *>
  130. *> \param[out] RANK
  131. *> \verbatim
  132. *> RANK is INTEGER
  133. *> The number of singular values of A greater than RCOND times
  134. *> the largest singular value.
  135. *> \endverbatim
  136. *>
  137. *> \param[out] WORK
  138. *> \verbatim
  139. *> WORK is COMPLEX array, dimension (N * NRHS).
  140. *> \endverbatim
  141. *>
  142. *> \param[out] RWORK
  143. *> \verbatim
  144. *> RWORK is REAL array, dimension at least
  145. *> (9*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +
  146. *> MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS ),
  147. *> where
  148. *> NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
  149. *> \endverbatim
  150. *>
  151. *> \param[out] IWORK
  152. *> \verbatim
  153. *> IWORK is INTEGER array, dimension (3*N*NLVL + 11*N).
  154. *> \endverbatim
  155. *>
  156. *> \param[out] INFO
  157. *> \verbatim
  158. *> INFO is INTEGER
  159. *> = 0: successful exit.
  160. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  161. *> > 0: The algorithm failed to compute a singular value while
  162. *> working on the submatrix lying in rows and columns
  163. *> INFO/(N+1) through MOD(INFO,N+1).
  164. *> \endverbatim
  165. *
  166. * Authors:
  167. * ========
  168. *
  169. *> \author Univ. of Tennessee
  170. *> \author Univ. of California Berkeley
  171. *> \author Univ. of Colorado Denver
  172. *> \author NAG Ltd.
  173. *
  174. *> \date December 2016
  175. *
  176. *> \ingroup complexOTHERcomputational
  177. *
  178. *> \par Contributors:
  179. * ==================
  180. *>
  181. *> Ming Gu and Ren-Cang Li, Computer Science Division, University of
  182. *> California at Berkeley, USA \n
  183. *> Osni Marques, LBNL/NERSC, USA \n
  184. *
  185. * =====================================================================
  186. SUBROUTINE CLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
  187. $ RANK, WORK, RWORK, IWORK, INFO )
  188. *
  189. * -- LAPACK computational routine (version 3.7.0) --
  190. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  191. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  192. * December 2016
  193. *
  194. * .. Scalar Arguments ..
  195. CHARACTER UPLO
  196. INTEGER INFO, LDB, N, NRHS, RANK, SMLSIZ
  197. REAL RCOND
  198. * ..
  199. * .. Array Arguments ..
  200. INTEGER IWORK( * )
  201. REAL D( * ), E( * ), RWORK( * )
  202. COMPLEX B( LDB, * ), WORK( * )
  203. * ..
  204. *
  205. * =====================================================================
  206. *
  207. * .. Parameters ..
  208. REAL ZERO, ONE, TWO
  209. PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )
  210. COMPLEX CZERO
  211. PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ) )
  212. * ..
  213. * .. Local Scalars ..
  214. INTEGER BX, BXST, C, DIFL, DIFR, GIVCOL, GIVNUM,
  215. $ GIVPTR, I, ICMPQ1, ICMPQ2, IRWB, IRWIB, IRWRB,
  216. $ IRWU, IRWVT, IRWWRK, IWK, J, JCOL, JIMAG,
  217. $ JREAL, JROW, K, NLVL, NM1, NRWORK, NSIZE, NSUB,
  218. $ PERM, POLES, S, SIZEI, SMLSZP, SQRE, ST, ST1,
  219. $ U, VT, Z
  220. REAL CS, EPS, ORGNRM, R, RCND, SN, TOL
  221. * ..
  222. * .. External Functions ..
  223. INTEGER ISAMAX
  224. REAL SLAMCH, SLANST
  225. EXTERNAL ISAMAX, SLAMCH, SLANST
  226. * ..
  227. * .. External Subroutines ..
  228. EXTERNAL CCOPY, CLACPY, CLALSA, CLASCL, CLASET, CSROT,
  229. $ SGEMM, SLARTG, SLASCL, SLASDA, SLASDQ, SLASET,
  230. $ SLASRT, XERBLA
  231. * ..
  232. * .. Intrinsic Functions ..
  233. INTRINSIC ABS, AIMAG, CMPLX, INT, LOG, REAL, SIGN
  234. * ..
  235. * .. Executable Statements ..
  236. *
  237. * Test the input parameters.
  238. *
  239. INFO = 0
  240. *
  241. IF( N.LT.0 ) THEN
  242. INFO = -3
  243. ELSE IF( NRHS.LT.1 ) THEN
  244. INFO = -4
  245. ELSE IF( ( LDB.LT.1 ) .OR. ( LDB.LT.N ) ) THEN
  246. INFO = -8
  247. END IF
  248. IF( INFO.NE.0 ) THEN
  249. CALL XERBLA( 'CLALSD', -INFO )
  250. RETURN
  251. END IF
  252. *
  253. EPS = SLAMCH( 'Epsilon' )
  254. *
  255. * Set up the tolerance.
  256. *
  257. IF( ( RCOND.LE.ZERO ) .OR. ( RCOND.GE.ONE ) ) THEN
  258. RCND = EPS
  259. ELSE
  260. RCND = RCOND
  261. END IF
  262. *
  263. RANK = 0
  264. *
  265. * Quick return if possible.
  266. *
  267. IF( N.EQ.0 ) THEN
  268. RETURN
  269. ELSE IF( N.EQ.1 ) THEN
  270. IF( D( 1 ).EQ.ZERO ) THEN
  271. CALL CLASET( 'A', 1, NRHS, CZERO, CZERO, B, LDB )
  272. ELSE
  273. RANK = 1
  274. CALL CLASCL( 'G', 0, 0, D( 1 ), ONE, 1, NRHS, B, LDB, INFO )
  275. D( 1 ) = ABS( D( 1 ) )
  276. END IF
  277. RETURN
  278. END IF
  279. *
  280. * Rotate the matrix if it is lower bidiagonal.
  281. *
  282. IF( UPLO.EQ.'L' ) THEN
  283. DO 10 I = 1, N - 1
  284. CALL SLARTG( D( I ), E( I ), CS, SN, R )
  285. D( I ) = R
  286. E( I ) = SN*D( I+1 )
  287. D( I+1 ) = CS*D( I+1 )
  288. IF( NRHS.EQ.1 ) THEN
  289. CALL CSROT( 1, B( I, 1 ), 1, B( I+1, 1 ), 1, CS, SN )
  290. ELSE
  291. RWORK( I*2-1 ) = CS
  292. RWORK( I*2 ) = SN
  293. END IF
  294. 10 CONTINUE
  295. IF( NRHS.GT.1 ) THEN
  296. DO 30 I = 1, NRHS
  297. DO 20 J = 1, N - 1
  298. CS = RWORK( J*2-1 )
  299. SN = RWORK( J*2 )
  300. CALL CSROT( 1, B( J, I ), 1, B( J+1, I ), 1, CS, SN )
  301. 20 CONTINUE
  302. 30 CONTINUE
  303. END IF
  304. END IF
  305. *
  306. * Scale.
  307. *
  308. NM1 = N - 1
  309. ORGNRM = SLANST( 'M', N, D, E )
  310. IF( ORGNRM.EQ.ZERO ) THEN
  311. CALL CLASET( 'A', N, NRHS, CZERO, CZERO, B, LDB )
  312. RETURN
  313. END IF
  314. *
  315. CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
  316. CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, INFO )
  317. *
  318. * If N is smaller than the minimum divide size SMLSIZ, then solve
  319. * the problem with another solver.
  320. *
  321. IF( N.LE.SMLSIZ ) THEN
  322. IRWU = 1
  323. IRWVT = IRWU + N*N
  324. IRWWRK = IRWVT + N*N
  325. IRWRB = IRWWRK
  326. IRWIB = IRWRB + N*NRHS
  327. IRWB = IRWIB + N*NRHS
  328. CALL SLASET( 'A', N, N, ZERO, ONE, RWORK( IRWU ), N )
  329. CALL SLASET( 'A', N, N, ZERO, ONE, RWORK( IRWVT ), N )
  330. CALL SLASDQ( 'U', 0, N, N, N, 0, D, E, RWORK( IRWVT ), N,
  331. $ RWORK( IRWU ), N, RWORK( IRWWRK ), 1,
  332. $ RWORK( IRWWRK ), INFO )
  333. IF( INFO.NE.0 ) THEN
  334. RETURN
  335. END IF
  336. *
  337. * In the real version, B is passed to SLASDQ and multiplied
  338. * internally by Q**H. Here B is complex and that product is
  339. * computed below in two steps (real and imaginary parts).
  340. *
  341. J = IRWB - 1
  342. DO 50 JCOL = 1, NRHS
  343. DO 40 JROW = 1, N
  344. J = J + 1
  345. RWORK( J ) = REAL( B( JROW, JCOL ) )
  346. 40 CONTINUE
  347. 50 CONTINUE
  348. CALL SGEMM( 'T', 'N', N, NRHS, N, ONE, RWORK( IRWU ), N,
  349. $ RWORK( IRWB ), N, ZERO, RWORK( IRWRB ), N )
  350. J = IRWB - 1
  351. DO 70 JCOL = 1, NRHS
  352. DO 60 JROW = 1, N
  353. J = J + 1
  354. RWORK( J ) = AIMAG( B( JROW, JCOL ) )
  355. 60 CONTINUE
  356. 70 CONTINUE
  357. CALL SGEMM( 'T', 'N', N, NRHS, N, ONE, RWORK( IRWU ), N,
  358. $ RWORK( IRWB ), N, ZERO, RWORK( IRWIB ), N )
  359. JREAL = IRWRB - 1
  360. JIMAG = IRWIB - 1
  361. DO 90 JCOL = 1, NRHS
  362. DO 80 JROW = 1, N
  363. JREAL = JREAL + 1
  364. JIMAG = JIMAG + 1
  365. B( JROW, JCOL ) = CMPLX( RWORK( JREAL ), RWORK( JIMAG ) )
  366. 80 CONTINUE
  367. 90 CONTINUE
  368. *
  369. TOL = RCND*ABS( D( ISAMAX( N, D, 1 ) ) )
  370. DO 100 I = 1, N
  371. IF( D( I ).LE.TOL ) THEN
  372. CALL CLASET( 'A', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
  373. ELSE
  374. CALL CLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS, B( I, 1 ),
  375. $ LDB, INFO )
  376. RANK = RANK + 1
  377. END IF
  378. 100 CONTINUE
  379. *
  380. * Since B is complex, the following call to SGEMM is performed
  381. * in two steps (real and imaginary parts). That is for V * B
  382. * (in the real version of the code V**H is stored in WORK).
  383. *
  384. * CALL SGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO,
  385. * $ WORK( NWORK ), N )
  386. *
  387. J = IRWB - 1
  388. DO 120 JCOL = 1, NRHS
  389. DO 110 JROW = 1, N
  390. J = J + 1
  391. RWORK( J ) = REAL( B( JROW, JCOL ) )
  392. 110 CONTINUE
  393. 120 CONTINUE
  394. CALL SGEMM( 'T', 'N', N, NRHS, N, ONE, RWORK( IRWVT ), N,
  395. $ RWORK( IRWB ), N, ZERO, RWORK( IRWRB ), N )
  396. J = IRWB - 1
  397. DO 140 JCOL = 1, NRHS
  398. DO 130 JROW = 1, N
  399. J = J + 1
  400. RWORK( J ) = AIMAG( B( JROW, JCOL ) )
  401. 130 CONTINUE
  402. 140 CONTINUE
  403. CALL SGEMM( 'T', 'N', N, NRHS, N, ONE, RWORK( IRWVT ), N,
  404. $ RWORK( IRWB ), N, ZERO, RWORK( IRWIB ), N )
  405. JREAL = IRWRB - 1
  406. JIMAG = IRWIB - 1
  407. DO 160 JCOL = 1, NRHS
  408. DO 150 JROW = 1, N
  409. JREAL = JREAL + 1
  410. JIMAG = JIMAG + 1
  411. B( JROW, JCOL ) = CMPLX( RWORK( JREAL ), RWORK( JIMAG ) )
  412. 150 CONTINUE
  413. 160 CONTINUE
  414. *
  415. * Unscale.
  416. *
  417. CALL SLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
  418. CALL SLASRT( 'D', N, D, INFO )
  419. CALL CLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
  420. *
  421. RETURN
  422. END IF
  423. *
  424. * Book-keeping and setting up some constants.
  425. *
  426. NLVL = INT( LOG( REAL( N ) / REAL( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
  427. *
  428. SMLSZP = SMLSIZ + 1
  429. *
  430. U = 1
  431. VT = 1 + SMLSIZ*N
  432. DIFL = VT + SMLSZP*N
  433. DIFR = DIFL + NLVL*N
  434. Z = DIFR + NLVL*N*2
  435. C = Z + NLVL*N
  436. S = C + N
  437. POLES = S + N
  438. GIVNUM = POLES + 2*NLVL*N
  439. NRWORK = GIVNUM + 2*NLVL*N
  440. BX = 1
  441. *
  442. IRWRB = NRWORK
  443. IRWIB = IRWRB + SMLSIZ*NRHS
  444. IRWB = IRWIB + SMLSIZ*NRHS
  445. *
  446. SIZEI = 1 + N
  447. K = SIZEI + N
  448. GIVPTR = K + N
  449. PERM = GIVPTR + N
  450. GIVCOL = PERM + NLVL*N
  451. IWK = GIVCOL + NLVL*N*2
  452. *
  453. ST = 1
  454. SQRE = 0
  455. ICMPQ1 = 1
  456. ICMPQ2 = 0
  457. NSUB = 0
  458. *
  459. DO 170 I = 1, N
  460. IF( ABS( D( I ) ).LT.EPS ) THEN
  461. D( I ) = SIGN( EPS, D( I ) )
  462. END IF
  463. 170 CONTINUE
  464. *
  465. DO 240 I = 1, NM1
  466. IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
  467. NSUB = NSUB + 1
  468. IWORK( NSUB ) = ST
  469. *
  470. * Subproblem found. First determine its size and then
  471. * apply divide and conquer on it.
  472. *
  473. IF( I.LT.NM1 ) THEN
  474. *
  475. * A subproblem with E(I) small for I < NM1.
  476. *
  477. NSIZE = I - ST + 1
  478. IWORK( SIZEI+NSUB-1 ) = NSIZE
  479. ELSE IF( ABS( E( I ) ).GE.EPS ) THEN
  480. *
  481. * A subproblem with E(NM1) not too small but I = NM1.
  482. *
  483. NSIZE = N - ST + 1
  484. IWORK( SIZEI+NSUB-1 ) = NSIZE
  485. ELSE
  486. *
  487. * A subproblem with E(NM1) small. This implies an
  488. * 1-by-1 subproblem at D(N), which is not solved
  489. * explicitly.
  490. *
  491. NSIZE = I - ST + 1
  492. IWORK( SIZEI+NSUB-1 ) = NSIZE
  493. NSUB = NSUB + 1
  494. IWORK( NSUB ) = N
  495. IWORK( SIZEI+NSUB-1 ) = 1
  496. CALL CCOPY( NRHS, B( N, 1 ), LDB, WORK( BX+NM1 ), N )
  497. END IF
  498. ST1 = ST - 1
  499. IF( NSIZE.EQ.1 ) THEN
  500. *
  501. * This is a 1-by-1 subproblem and is not solved
  502. * explicitly.
  503. *
  504. CALL CCOPY( NRHS, B( ST, 1 ), LDB, WORK( BX+ST1 ), N )
  505. ELSE IF( NSIZE.LE.SMLSIZ ) THEN
  506. *
  507. * This is a small subproblem and is solved by SLASDQ.
  508. *
  509. CALL SLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
  510. $ RWORK( VT+ST1 ), N )
  511. CALL SLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
  512. $ RWORK( U+ST1 ), N )
  513. CALL SLASDQ( 'U', 0, NSIZE, NSIZE, NSIZE, 0, D( ST ),
  514. $ E( ST ), RWORK( VT+ST1 ), N, RWORK( U+ST1 ),
  515. $ N, RWORK( NRWORK ), 1, RWORK( NRWORK ),
  516. $ INFO )
  517. IF( INFO.NE.0 ) THEN
  518. RETURN
  519. END IF
  520. *
  521. * In the real version, B is passed to SLASDQ and multiplied
  522. * internally by Q**H. Here B is complex and that product is
  523. * computed below in two steps (real and imaginary parts).
  524. *
  525. J = IRWB - 1
  526. DO 190 JCOL = 1, NRHS
  527. DO 180 JROW = ST, ST + NSIZE - 1
  528. J = J + 1
  529. RWORK( J ) = REAL( B( JROW, JCOL ) )
  530. 180 CONTINUE
  531. 190 CONTINUE
  532. CALL SGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
  533. $ RWORK( U+ST1 ), N, RWORK( IRWB ), NSIZE,
  534. $ ZERO, RWORK( IRWRB ), NSIZE )
  535. J = IRWB - 1
  536. DO 210 JCOL = 1, NRHS
  537. DO 200 JROW = ST, ST + NSIZE - 1
  538. J = J + 1
  539. RWORK( J ) = AIMAG( B( JROW, JCOL ) )
  540. 200 CONTINUE
  541. 210 CONTINUE
  542. CALL SGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
  543. $ RWORK( U+ST1 ), N, RWORK( IRWB ), NSIZE,
  544. $ ZERO, RWORK( IRWIB ), NSIZE )
  545. JREAL = IRWRB - 1
  546. JIMAG = IRWIB - 1
  547. DO 230 JCOL = 1, NRHS
  548. DO 220 JROW = ST, ST + NSIZE - 1
  549. JREAL = JREAL + 1
  550. JIMAG = JIMAG + 1
  551. B( JROW, JCOL ) = CMPLX( RWORK( JREAL ),
  552. $ RWORK( JIMAG ) )
  553. 220 CONTINUE
  554. 230 CONTINUE
  555. *
  556. CALL CLACPY( 'A', NSIZE, NRHS, B( ST, 1 ), LDB,
  557. $ WORK( BX+ST1 ), N )
  558. ELSE
  559. *
  560. * A large problem. Solve it using divide and conquer.
  561. *
  562. CALL SLASDA( ICMPQ1, SMLSIZ, NSIZE, SQRE, D( ST ),
  563. $ E( ST ), RWORK( U+ST1 ), N, RWORK( VT+ST1 ),
  564. $ IWORK( K+ST1 ), RWORK( DIFL+ST1 ),
  565. $ RWORK( DIFR+ST1 ), RWORK( Z+ST1 ),
  566. $ RWORK( POLES+ST1 ), IWORK( GIVPTR+ST1 ),
  567. $ IWORK( GIVCOL+ST1 ), N, IWORK( PERM+ST1 ),
  568. $ RWORK( GIVNUM+ST1 ), RWORK( C+ST1 ),
  569. $ RWORK( S+ST1 ), RWORK( NRWORK ),
  570. $ IWORK( IWK ), INFO )
  571. IF( INFO.NE.0 ) THEN
  572. RETURN
  573. END IF
  574. BXST = BX + ST1
  575. CALL CLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, B( ST, 1 ),
  576. $ LDB, WORK( BXST ), N, RWORK( U+ST1 ), N,
  577. $ RWORK( VT+ST1 ), IWORK( K+ST1 ),
  578. $ RWORK( DIFL+ST1 ), RWORK( DIFR+ST1 ),
  579. $ RWORK( Z+ST1 ), RWORK( POLES+ST1 ),
  580. $ IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
  581. $ IWORK( PERM+ST1 ), RWORK( GIVNUM+ST1 ),
  582. $ RWORK( C+ST1 ), RWORK( S+ST1 ),
  583. $ RWORK( NRWORK ), IWORK( IWK ), INFO )
  584. IF( INFO.NE.0 ) THEN
  585. RETURN
  586. END IF
  587. END IF
  588. ST = I + 1
  589. END IF
  590. 240 CONTINUE
  591. *
  592. * Apply the singular values and treat the tiny ones as zero.
  593. *
  594. TOL = RCND*ABS( D( ISAMAX( N, D, 1 ) ) )
  595. *
  596. DO 250 I = 1, N
  597. *
  598. * Some of the elements in D can be negative because 1-by-1
  599. * subproblems were not solved explicitly.
  600. *
  601. IF( ABS( D( I ) ).LE.TOL ) THEN
  602. CALL CLASET( 'A', 1, NRHS, CZERO, CZERO, WORK( BX+I-1 ), N )
  603. ELSE
  604. RANK = RANK + 1
  605. CALL CLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS,
  606. $ WORK( BX+I-1 ), N, INFO )
  607. END IF
  608. D( I ) = ABS( D( I ) )
  609. 250 CONTINUE
  610. *
  611. * Now apply back the right singular vectors.
  612. *
  613. ICMPQ2 = 1
  614. DO 320 I = 1, NSUB
  615. ST = IWORK( I )
  616. ST1 = ST - 1
  617. NSIZE = IWORK( SIZEI+I-1 )
  618. BXST = BX + ST1
  619. IF( NSIZE.EQ.1 ) THEN
  620. CALL CCOPY( NRHS, WORK( BXST ), N, B( ST, 1 ), LDB )
  621. ELSE IF( NSIZE.LE.SMLSIZ ) THEN
  622. *
  623. * Since B and BX are complex, the following call to SGEMM
  624. * is performed in two steps (real and imaginary parts).
  625. *
  626. * CALL SGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
  627. * $ RWORK( VT+ST1 ), N, RWORK( BXST ), N, ZERO,
  628. * $ B( ST, 1 ), LDB )
  629. *
  630. J = BXST - N - 1
  631. JREAL = IRWB - 1
  632. DO 270 JCOL = 1, NRHS
  633. J = J + N
  634. DO 260 JROW = 1, NSIZE
  635. JREAL = JREAL + 1
  636. RWORK( JREAL ) = REAL( WORK( J+JROW ) )
  637. 260 CONTINUE
  638. 270 CONTINUE
  639. CALL SGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
  640. $ RWORK( VT+ST1 ), N, RWORK( IRWB ), NSIZE, ZERO,
  641. $ RWORK( IRWRB ), NSIZE )
  642. J = BXST - N - 1
  643. JIMAG = IRWB - 1
  644. DO 290 JCOL = 1, NRHS
  645. J = J + N
  646. DO 280 JROW = 1, NSIZE
  647. JIMAG = JIMAG + 1
  648. RWORK( JIMAG ) = AIMAG( WORK( J+JROW ) )
  649. 280 CONTINUE
  650. 290 CONTINUE
  651. CALL SGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
  652. $ RWORK( VT+ST1 ), N, RWORK( IRWB ), NSIZE, ZERO,
  653. $ RWORK( IRWIB ), NSIZE )
  654. JREAL = IRWRB - 1
  655. JIMAG = IRWIB - 1
  656. DO 310 JCOL = 1, NRHS
  657. DO 300 JROW = ST, ST + NSIZE - 1
  658. JREAL = JREAL + 1
  659. JIMAG = JIMAG + 1
  660. B( JROW, JCOL ) = CMPLX( RWORK( JREAL ),
  661. $ RWORK( JIMAG ) )
  662. 300 CONTINUE
  663. 310 CONTINUE
  664. ELSE
  665. CALL CLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, WORK( BXST ), N,
  666. $ B( ST, 1 ), LDB, RWORK( U+ST1 ), N,
  667. $ RWORK( VT+ST1 ), IWORK( K+ST1 ),
  668. $ RWORK( DIFL+ST1 ), RWORK( DIFR+ST1 ),
  669. $ RWORK( Z+ST1 ), RWORK( POLES+ST1 ),
  670. $ IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
  671. $ IWORK( PERM+ST1 ), RWORK( GIVNUM+ST1 ),
  672. $ RWORK( C+ST1 ), RWORK( S+ST1 ),
  673. $ RWORK( NRWORK ), IWORK( IWK ), INFO )
  674. IF( INFO.NE.0 ) THEN
  675. RETURN
  676. END IF
  677. END IF
  678. 320 CONTINUE
  679. *
  680. * Unscale and sort the singular values.
  681. *
  682. CALL SLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
  683. CALL SLASRT( 'D', N, D, INFO )
  684. CALL CLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
  685. *
  686. RETURN
  687. *
  688. * End of CLALSD
  689. *
  690. END