You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctrsmf.f 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459
  1. SUBROUTINE CTRSMF ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
  2. $ B, LDB )
  3. * .. Scalar Arguments ..
  4. CHARACTER*1 SIDE, UPLO, TRANSA, DIAG
  5. INTEGER M, N, LDA, LDB
  6. COMPLEX ALPHA
  7. * .. Array Arguments ..
  8. COMPLEX A( LDA, * ), B( LDB, * )
  9. * ..
  10. *
  11. * Purpose
  12. * =======
  13. *
  14. * CTRSM solves one of the matrix equations
  15. *
  16. * op( A )*X = alpha*B, or X*op( A ) = alpha*B,
  17. *
  18. * where alpha is a scalar, X and B are m by n matrices, A is a unit, or
  19. * non-unit, upper or lower triangular matrix and op( A ) is one of
  20. *
  21. * op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ).
  22. *
  23. * The matrix X is overwritten on B.
  24. *
  25. * Parameters
  26. * ==========
  27. *
  28. * SIDE - CHARACTER*1.
  29. * On entry, SIDE specifies whether op( A ) appears on the left
  30. * or right of X as follows:
  31. *
  32. * SIDE = 'L' or 'l' op( A )*X = alpha*B.
  33. *
  34. * SIDE = 'R' or 'r' X*op( A ) = alpha*B.
  35. *
  36. * Unchanged on exit.
  37. *
  38. * UPLO - CHARACTER*1.
  39. * On entry, UPLO specifies whether the matrix A is an upper or
  40. * lower triangular matrix as follows:
  41. *
  42. * UPLO = 'U' or 'u' A is an upper triangular matrix.
  43. *
  44. * UPLO = 'L' or 'l' A is a lower triangular matrix.
  45. *
  46. * Unchanged on exit.
  47. *
  48. * TRANSA - CHARACTER*1.
  49. * On entry, TRANSA specifies the form of op( A ) to be used in
  50. * the matrix multiplication as follows:
  51. *
  52. * TRANSA = 'N' or 'n' op( A ) = A.
  53. *
  54. * TRANSA = 'T' or 't' op( A ) = A'.
  55. *
  56. * TRANSA = 'C' or 'c' op( A ) = conjg( A' ).
  57. *
  58. * Unchanged on exit.
  59. *
  60. * DIAG - CHARACTER*1.
  61. * On entry, DIAG specifies whether or not A is unit triangular
  62. * as follows:
  63. *
  64. * DIAG = 'U' or 'u' A is assumed to be unit triangular.
  65. *
  66. * DIAG = 'N' or 'n' A is not assumed to be unit
  67. * triangular.
  68. *
  69. * Unchanged on exit.
  70. *
  71. * M - INTEGER.
  72. * On entry, M specifies the number of rows of B. M must be at
  73. * least zero.
  74. * Unchanged on exit.
  75. *
  76. * N - INTEGER.
  77. * On entry, N specifies the number of columns of B. N must be
  78. * at least zero.
  79. * Unchanged on exit.
  80. *
  81. * ALPHA - COMPLEX .
  82. * On entry, ALPHA specifies the scalar alpha. When alpha is
  83. * zero then A is not referenced and B need not be set before
  84. * entry.
  85. * Unchanged on exit.
  86. *
  87. * A - COMPLEX array of DIMENSION ( LDA, k ), where k is m
  88. * when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
  89. * Before entry with UPLO = 'U' or 'u', the leading k by k
  90. * upper triangular part of the array A must contain the upper
  91. * triangular matrix and the strictly lower triangular part of
  92. * A is not referenced.
  93. * Before entry with UPLO = 'L' or 'l', the leading k by k
  94. * lower triangular part of the array A must contain the lower
  95. * triangular matrix and the strictly upper triangular part of
  96. * A is not referenced.
  97. * Note that when DIAG = 'U' or 'u', the diagonal elements of
  98. * A are not referenced either, but are assumed to be unity.
  99. * Unchanged on exit.
  100. *
  101. * LDA - INTEGER.
  102. * On entry, LDA specifies the first dimension of A as declared
  103. * in the calling (sub) program. When SIDE = 'L' or 'l' then
  104. * LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
  105. * then LDA must be at least max( 1, n ).
  106. * Unchanged on exit.
  107. *
  108. * B - COMPLEX array of DIMENSION ( LDB, n ).
  109. * Before entry, the leading m by n part of the array B must
  110. * contain the right-hand side matrix B, and on exit is
  111. * overwritten by the solution matrix X.
  112. *
  113. * LDB - INTEGER.
  114. * On entry, LDB specifies the first dimension of B as declared
  115. * in the calling (sub) program. LDB must be at least
  116. * max( 1, m ).
  117. * Unchanged on exit.
  118. *
  119. *
  120. * Level 3 Blas routine.
  121. *
  122. * -- Written on 8-February-1989.
  123. * Jack Dongarra, Argonne National Laboratory.
  124. * Iain Duff, AERE Harwell.
  125. * Jeremy Du Croz, Numerical Algorithms Group Ltd.
  126. * Sven Hammarling, Numerical Algorithms Group Ltd.
  127. *
  128. *
  129. * .. External Functions ..
  130. LOGICAL LSAME
  131. EXTERNAL LSAME
  132. * .. External Subroutines ..
  133. EXTERNAL XERBLA
  134. * .. Intrinsic Functions ..
  135. INTRINSIC CONJG, MAX
  136. * .. Local Scalars ..
  137. LOGICAL LSIDE, NOCONJ, NOUNIT, UPPER
  138. INTEGER I, INFO, J, K, NROWA
  139. COMPLEX TEMP
  140. * .. Parameters ..
  141. COMPLEX ONE
  142. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  143. COMPLEX ZERO
  144. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
  145. * ..
  146. * .. Executable Statements ..
  147. *
  148. * Test the input parameters.
  149. *
  150. LSIDE = LSAME( SIDE , 'L' )
  151. IF( LSIDE )THEN
  152. NROWA = M
  153. ELSE
  154. NROWA = N
  155. END IF
  156. NOCONJ = (LSAME( TRANSA, 'N' ) .OR. LSAME( TRANSA, 'T' ))
  157. NOUNIT = LSAME( DIAG , 'N' )
  158. UPPER = LSAME( UPLO , 'U' )
  159. *
  160. INFO = 0
  161. IF( ( .NOT.LSIDE ).AND.
  162. $ ( .NOT.LSAME( SIDE , 'R' ) ) )THEN
  163. INFO = 1
  164. ELSE IF( ( .NOT.UPPER ).AND.
  165. $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN
  166. INFO = 2
  167. ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND.
  168. $ ( .NOT.LSAME( TRANSA, 'T' ) ).AND.
  169. $ ( .NOT.LSAME( TRANSA, 'R' ) ).AND.
  170. $ ( .NOT.LSAME( TRANSA, 'C' ) ) )THEN
  171. INFO = 3
  172. ELSE IF( ( .NOT.LSAME( DIAG , 'U' ) ).AND.
  173. $ ( .NOT.LSAME( DIAG , 'N' ) ) )THEN
  174. INFO = 4
  175. ELSE IF( M .LT.0 )THEN
  176. INFO = 5
  177. ELSE IF( N .LT.0 )THEN
  178. INFO = 6
  179. ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
  180. INFO = 9
  181. ELSE IF( LDB.LT.MAX( 1, M ) )THEN
  182. INFO = 11
  183. END IF
  184. IF( INFO.NE.0 )THEN
  185. CALL XERBLA( 'CTRSM ', INFO )
  186. RETURN
  187. END IF
  188. *
  189. * Quick return if possible.
  190. *
  191. IF( N.EQ.0 )
  192. $ RETURN
  193. *
  194. * And when alpha.eq.zero.
  195. *
  196. IF( ALPHA.EQ.ZERO )THEN
  197. DO 20, J = 1, N
  198. DO 10, I = 1, M
  199. B( I, J ) = ZERO
  200. 10 CONTINUE
  201. 20 CONTINUE
  202. RETURN
  203. END IF
  204. *
  205. * Start the operations.
  206. *
  207. IF( LSIDE )THEN
  208. IF( LSAME( TRANSA, 'N' ) .OR. LSAME( TRANSA, 'R' ))THEN
  209. *
  210. * Form B := alpha*inv( A )*B.
  211. *
  212. IF( UPPER )THEN
  213. DO 60, J = 1, N
  214. IF( ALPHA.NE.ONE )THEN
  215. DO 30, I = 1, M
  216. B( I, J ) = ALPHA*B( I, J )
  217. 30 CONTINUE
  218. END IF
  219. DO 50, K = M, 1, -1
  220. IF( B( K, J ).NE.ZERO )THEN
  221. IF( NOUNIT ) THEN
  222. IF (NOCONJ) THEN
  223. B( K, J ) = B( K, J )/A( K, K )
  224. ELSE
  225. B( K, J ) = B( K, J )/CONJG(A( K, K ))
  226. ENDIF
  227. ENDIF
  228. IF (NOCONJ) THEN
  229. DO 40, I = 1, K - 1
  230. B( I, J ) = B( I, J ) - B( K, J )*A( I, K )
  231. 40 CONTINUE
  232. ELSE
  233. DO 45, I = 1, K - 1
  234. B( I, J ) = B( I, J ) - B( K, J )*CONJG(A( I, K ))
  235. 45 CONTINUE
  236. ENDIF
  237. ENDIF
  238. 50 CONTINUE
  239. 60 CONTINUE
  240. ELSE
  241. DO 100, J = 1, N
  242. IF( ALPHA.NE.ONE )THEN
  243. DO 70, I = 1, M
  244. B( I, J ) = ALPHA*B( I, J )
  245. 70 CONTINUE
  246. END IF
  247. DO 90 K = 1, M
  248. IF (NOCONJ) THEN
  249. IF( B( K, J ).NE.ZERO )THEN
  250. IF( NOUNIT )
  251. $ B( K, J ) = B( K, J )/A( K, K )
  252. DO 80, I = K + 1, M
  253. B( I, J ) = B( I, J ) - B( K, J )*A( I, K )
  254. 80 CONTINUE
  255. END IF
  256. ELSE
  257. IF( B( K, J ).NE.ZERO )THEN
  258. IF( NOUNIT )
  259. $ B( K, J ) = B( K, J )/CONJG(A( K, K ))
  260. DO 85, I = K + 1, M
  261. B( I, J ) = B( I, J ) - B( K, J )*CONJG(A( I, K ))
  262. 85 CONTINUE
  263. END IF
  264. ENDIF
  265. 90 CONTINUE
  266. 100 CONTINUE
  267. END IF
  268. ELSE
  269. *
  270. * Form B := alpha*inv( A' )*B
  271. * or B := alpha*inv( conjg( A' ) )*B.
  272. *
  273. IF( UPPER )THEN
  274. DO 140, J = 1, N
  275. DO 130, I = 1, M
  276. TEMP = ALPHA*B( I, J )
  277. IF( NOCONJ )THEN
  278. DO 110, K = 1, I - 1
  279. TEMP = TEMP - A( K, I )*B( K, J )
  280. 110 CONTINUE
  281. IF( NOUNIT )
  282. $ TEMP = TEMP/A( I, I )
  283. ELSE
  284. DO 120, K = 1, I - 1
  285. TEMP = TEMP - CONJG( A( K, I ) )*B( K, J )
  286. 120 CONTINUE
  287. IF( NOUNIT )
  288. $ TEMP = TEMP/CONJG( A( I, I ) )
  289. END IF
  290. B( I, J ) = TEMP
  291. 130 CONTINUE
  292. 140 CONTINUE
  293. ELSE
  294. DO 180, J = 1, N
  295. DO 170, I = M, 1, -1
  296. TEMP = ALPHA*B( I, J )
  297. IF( NOCONJ )THEN
  298. DO 150, K = I + 1, M
  299. TEMP = TEMP - A( K, I )*B( K, J )
  300. 150 CONTINUE
  301. IF( NOUNIT )
  302. $ TEMP = TEMP/A( I, I )
  303. ELSE
  304. DO 160, K = I + 1, M
  305. TEMP = TEMP - CONJG( A( K, I ) )*B( K, J )
  306. 160 CONTINUE
  307. IF( NOUNIT )
  308. $ TEMP = TEMP/CONJG( A( I, I ) )
  309. END IF
  310. B( I, J ) = TEMP
  311. 170 CONTINUE
  312. 180 CONTINUE
  313. END IF
  314. END IF
  315. ELSE
  316. IF( LSAME( TRANSA, 'N' ) .OR. LSAME( TRANSA, 'R' ))THEN
  317. *
  318. * Form B := alpha*B*inv( A ).
  319. *
  320. IF( UPPER )THEN
  321. DO 230, J = 1, N
  322. IF( ALPHA.NE.ONE )THEN
  323. DO 190, I = 1, M
  324. B( I, J ) = ALPHA*B( I, J )
  325. 190 CONTINUE
  326. END IF
  327. DO 210, K = 1, J - 1
  328. IF( A( K, J ).NE.ZERO )THEN
  329. IF (NOCONJ) THEN
  330. DO 200, I = 1, M
  331. B( I, J ) = B( I, J ) - A( K, J )*B( I, K )
  332. 200 CONTINUE
  333. ELSE
  334. DO 205, I = 1, M
  335. B( I, J ) = B( I, J ) - CONJG(A( K, J ))*B( I, K )
  336. 205 CONTINUE
  337. ENDIF
  338. END IF
  339. 210 CONTINUE
  340. IF( NOUNIT )THEN
  341. IF (NOCONJ) THEN
  342. TEMP = ONE/A( J, J )
  343. ELSE
  344. TEMP = ONE/CONJG(A( J, J ))
  345. ENDIF
  346. DO 220, I = 1, M
  347. B( I, J ) = TEMP*B( I, J )
  348. 220 CONTINUE
  349. END IF
  350. 230 CONTINUE
  351. ELSE
  352. DO 280, J = N, 1, -1
  353. IF( ALPHA.NE.ONE )THEN
  354. DO 240, I = 1, M
  355. B( I, J ) = ALPHA*B( I, J )
  356. 240 CONTINUE
  357. END IF
  358. DO 260, K = J + 1, N
  359. IF( A( K, J ).NE.ZERO )THEN
  360. IF (NOCONJ) THEN
  361. DO 250, I = 1, M
  362. B( I, J ) = B( I, J ) - A( K, J )*B( I, K )
  363. 250 CONTINUE
  364. ELSE
  365. DO 255, I = 1, M
  366. B( I, J ) = B( I, J ) - CONJG(A( K, J ))*B( I, K )
  367. 255 CONTINUE
  368. ENDIF
  369. END IF
  370. 260 CONTINUE
  371. IF( NOUNIT )THEN
  372. IF (NOCONJ) THEN
  373. TEMP = ONE/A( J, J )
  374. ELSE
  375. TEMP = ONE/CONJG(A( J, J ))
  376. ENDIF
  377. DO 270, I = 1, M
  378. B( I, J ) = TEMP*B( I, J )
  379. 270 CONTINUE
  380. END IF
  381. 280 CONTINUE
  382. END IF
  383. ELSE
  384. *
  385. * Form B := alpha*B*inv( A' )
  386. * or B := alpha*B*inv( conjg( A' ) ).
  387. *
  388. IF( UPPER )THEN
  389. DO 330, K = N, 1, -1
  390. IF( NOUNIT )THEN
  391. IF( NOCONJ )THEN
  392. TEMP = ONE/A( K, K )
  393. ELSE
  394. TEMP = ONE/CONJG( A( K, K ) )
  395. END IF
  396. DO 290, I = 1, M
  397. B( I, K ) = TEMP*B( I, K )
  398. 290 CONTINUE
  399. END IF
  400. DO 310, J = 1, K - 1
  401. IF( A( J, K ).NE.ZERO )THEN
  402. IF( NOCONJ )THEN
  403. TEMP = A( J, K )
  404. ELSE
  405. TEMP = CONJG( A( J, K ) )
  406. END IF
  407. DO 300, I = 1, M
  408. B( I, J ) = B( I, J ) - TEMP*B( I, K )
  409. 300 CONTINUE
  410. END IF
  411. 310 CONTINUE
  412. IF( ALPHA.NE.ONE )THEN
  413. DO 320, I = 1, M
  414. B( I, K ) = ALPHA*B( I, K )
  415. 320 CONTINUE
  416. END IF
  417. 330 CONTINUE
  418. ELSE
  419. DO 380, K = 1, N
  420. IF( NOUNIT )THEN
  421. IF( NOCONJ )THEN
  422. TEMP = ONE/A( K, K )
  423. ELSE
  424. TEMP = ONE/CONJG( A( K, K ) )
  425. END IF
  426. DO 340, I = 1, M
  427. B( I, K ) = TEMP*B( I, K )
  428. 340 CONTINUE
  429. END IF
  430. DO 360, J = K + 1, N
  431. IF( A( J, K ).NE.ZERO )THEN
  432. IF( NOCONJ )THEN
  433. TEMP = A( J, K )
  434. ELSE
  435. TEMP = CONJG( A( J, K ) )
  436. END IF
  437. DO 350, I = 1, M
  438. B( I, J ) = B( I, J ) - TEMP*B( I, K )
  439. 350 CONTINUE
  440. END IF
  441. 360 CONTINUE
  442. IF( ALPHA.NE.ONE )THEN
  443. DO 370, I = 1, M
  444. B( I, K ) = ALPHA*B( I, K )
  445. 370 CONTINUE
  446. END IF
  447. 380 CONTINUE
  448. END IF
  449. END IF
  450. END IF
  451. *
  452. RETURN
  453. *
  454. * End of CTRSM .
  455. *
  456. END