You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlasd3.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470
  1. *> \brief \b DLASD3 finds all square roots of the roots of the secular equation, as defined by the values in D and Z, and then updates the singular vectors by matrix multiplication. Used by sbdsdc.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLASD3 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd3.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd3.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd3.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2,
  22. * LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z,
  23. * INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * INTEGER INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR,
  27. * $ SQRE
  28. * ..
  29. * .. Array Arguments ..
  30. * INTEGER CTOT( * ), IDXC( * )
  31. * DOUBLE PRECISION D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ),
  32. * $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
  33. * $ Z( * )
  34. * ..
  35. *
  36. *
  37. *> \par Purpose:
  38. * =============
  39. *>
  40. *> \verbatim
  41. *>
  42. *> DLASD3 finds all the square roots of the roots of the secular
  43. *> equation, as defined by the values in D and Z. It makes the
  44. *> appropriate calls to DLASD4 and then updates the singular
  45. *> vectors by matrix multiplication.
  46. *>
  47. *> This code makes very mild assumptions about floating point
  48. *> arithmetic. It will work on machines with a guard digit in
  49. *> add/subtract, or on those binary machines without guard digits
  50. *> which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
  51. *> It could conceivably fail on hexadecimal or decimal machines
  52. *> without guard digits, but we know of none.
  53. *>
  54. *> DLASD3 is called from DLASD1.
  55. *> \endverbatim
  56. *
  57. * Arguments:
  58. * ==========
  59. *
  60. *> \param[in] NL
  61. *> \verbatim
  62. *> NL is INTEGER
  63. *> The row dimension of the upper block. NL >= 1.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] NR
  67. *> \verbatim
  68. *> NR is INTEGER
  69. *> The row dimension of the lower block. NR >= 1.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] SQRE
  73. *> \verbatim
  74. *> SQRE is INTEGER
  75. *> = 0: the lower block is an NR-by-NR square matrix.
  76. *> = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
  77. *>
  78. *> The bidiagonal matrix has N = NL + NR + 1 rows and
  79. *> M = N + SQRE >= N columns.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] K
  83. *> \verbatim
  84. *> K is INTEGER
  85. *> The size of the secular equation, 1 =< K = < N.
  86. *> \endverbatim
  87. *>
  88. *> \param[out] D
  89. *> \verbatim
  90. *> D is DOUBLE PRECISION array, dimension(K)
  91. *> On exit the square roots of the roots of the secular equation,
  92. *> in ascending order.
  93. *> \endverbatim
  94. *>
  95. *> \param[out] Q
  96. *> \verbatim
  97. *> Q is DOUBLE PRECISION array,
  98. *> dimension at least (LDQ,K).
  99. *> \endverbatim
  100. *>
  101. *> \param[in] LDQ
  102. *> \verbatim
  103. *> LDQ is INTEGER
  104. *> The leading dimension of the array Q. LDQ >= K.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] DSIGMA
  108. *> \verbatim
  109. *> DSIGMA is DOUBLE PRECISION array, dimension(K)
  110. *> The first K elements of this array contain the old roots
  111. *> of the deflated updating problem. These are the poles
  112. *> of the secular equation.
  113. *> \endverbatim
  114. *>
  115. *> \param[out] U
  116. *> \verbatim
  117. *> U is DOUBLE PRECISION array, dimension (LDU, N)
  118. *> The last N - K columns of this matrix contain the deflated
  119. *> left singular vectors.
  120. *> \endverbatim
  121. *>
  122. *> \param[in] LDU
  123. *> \verbatim
  124. *> LDU is INTEGER
  125. *> The leading dimension of the array U. LDU >= N.
  126. *> \endverbatim
  127. *>
  128. *> \param[in,out] U2
  129. *> \verbatim
  130. *> U2 is DOUBLE PRECISION array, dimension (LDU2, N)
  131. *> The first K columns of this matrix contain the non-deflated
  132. *> left singular vectors for the split problem.
  133. *> \endverbatim
  134. *>
  135. *> \param[in] LDU2
  136. *> \verbatim
  137. *> LDU2 is INTEGER
  138. *> The leading dimension of the array U2. LDU2 >= N.
  139. *> \endverbatim
  140. *>
  141. *> \param[out] VT
  142. *> \verbatim
  143. *> VT is DOUBLE PRECISION array, dimension (LDVT, M)
  144. *> The last M - K columns of VT**T contain the deflated
  145. *> right singular vectors.
  146. *> \endverbatim
  147. *>
  148. *> \param[in] LDVT
  149. *> \verbatim
  150. *> LDVT is INTEGER
  151. *> The leading dimension of the array VT. LDVT >= N.
  152. *> \endverbatim
  153. *>
  154. *> \param[in,out] VT2
  155. *> \verbatim
  156. *> VT2 is DOUBLE PRECISION array, dimension (LDVT2, N)
  157. *> The first K columns of VT2**T contain the non-deflated
  158. *> right singular vectors for the split problem.
  159. *> \endverbatim
  160. *>
  161. *> \param[in] LDVT2
  162. *> \verbatim
  163. *> LDVT2 is INTEGER
  164. *> The leading dimension of the array VT2. LDVT2 >= N.
  165. *> \endverbatim
  166. *>
  167. *> \param[in] IDXC
  168. *> \verbatim
  169. *> IDXC is INTEGER array, dimension ( N )
  170. *> The permutation used to arrange the columns of U (and rows of
  171. *> VT) into three groups: the first group contains non-zero
  172. *> entries only at and above (or before) NL +1; the second
  173. *> contains non-zero entries only at and below (or after) NL+2;
  174. *> and the third is dense. The first column of U and the row of
  175. *> VT are treated separately, however.
  176. *>
  177. *> The rows of the singular vectors found by DLASD4
  178. *> must be likewise permuted before the matrix multiplies can
  179. *> take place.
  180. *> \endverbatim
  181. *>
  182. *> \param[in] CTOT
  183. *> \verbatim
  184. *> CTOT is INTEGER array, dimension ( 4 )
  185. *> A count of the total number of the various types of columns
  186. *> in U (or rows in VT), as described in IDXC. The fourth column
  187. *> type is any column which has been deflated.
  188. *> \endverbatim
  189. *>
  190. *> \param[in] Z
  191. *> \verbatim
  192. *> Z is DOUBLE PRECISION array, dimension (K)
  193. *> The first K elements of this array contain the components
  194. *> of the deflation-adjusted updating row vector.
  195. *> \endverbatim
  196. *>
  197. *> \param[out] INFO
  198. *> \verbatim
  199. *> INFO is INTEGER
  200. *> = 0: successful exit.
  201. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  202. *> > 0: if INFO = 1, a singular value did not converge
  203. *> \endverbatim
  204. *
  205. * Authors:
  206. * ========
  207. *
  208. *> \author Univ. of Tennessee
  209. *> \author Univ. of California Berkeley
  210. *> \author Univ. of Colorado Denver
  211. *> \author NAG Ltd.
  212. *
  213. *> \date September 2012
  214. *
  215. *> \ingroup auxOTHERauxiliary
  216. *
  217. *> \par Contributors:
  218. * ==================
  219. *>
  220. *> Ming Gu and Huan Ren, Computer Science Division, University of
  221. *> California at Berkeley, USA
  222. *>
  223. * =====================================================================
  224. SUBROUTINE DLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2,
  225. $ LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z,
  226. $ INFO )
  227. *
  228. * -- LAPACK auxiliary routine (version 3.4.2) --
  229. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  230. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  231. * September 2012
  232. *
  233. * .. Scalar Arguments ..
  234. INTEGER INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR,
  235. $ SQRE
  236. * ..
  237. * .. Array Arguments ..
  238. INTEGER CTOT( * ), IDXC( * )
  239. DOUBLE PRECISION D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ),
  240. $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
  241. $ Z( * )
  242. * ..
  243. *
  244. * =====================================================================
  245. *
  246. * .. Parameters ..
  247. DOUBLE PRECISION ONE, ZERO, NEGONE
  248. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0,
  249. $ NEGONE = -1.0D+0 )
  250. * ..
  251. * .. Local Scalars ..
  252. INTEGER CTEMP, I, J, JC, KTEMP, M, N, NLP1, NLP2, NRP1
  253. DOUBLE PRECISION RHO, TEMP
  254. * ..
  255. * .. External Functions ..
  256. DOUBLE PRECISION DLAMC3, DNRM2
  257. EXTERNAL DLAMC3, DNRM2
  258. * ..
  259. * .. External Subroutines ..
  260. EXTERNAL DCOPY, DGEMM, DLACPY, DLASCL, DLASD4, XERBLA
  261. * ..
  262. * .. Intrinsic Functions ..
  263. INTRINSIC ABS, SIGN, SQRT
  264. * ..
  265. * .. Executable Statements ..
  266. *
  267. * Test the input parameters.
  268. *
  269. INFO = 0
  270. *
  271. IF( NL.LT.1 ) THEN
  272. INFO = -1
  273. ELSE IF( NR.LT.1 ) THEN
  274. INFO = -2
  275. ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN
  276. INFO = -3
  277. END IF
  278. *
  279. N = NL + NR + 1
  280. M = N + SQRE
  281. NLP1 = NL + 1
  282. NLP2 = NL + 2
  283. *
  284. IF( ( K.LT.1 ) .OR. ( K.GT.N ) ) THEN
  285. INFO = -4
  286. ELSE IF( LDQ.LT.K ) THEN
  287. INFO = -7
  288. ELSE IF( LDU.LT.N ) THEN
  289. INFO = -10
  290. ELSE IF( LDU2.LT.N ) THEN
  291. INFO = -12
  292. ELSE IF( LDVT.LT.M ) THEN
  293. INFO = -14
  294. ELSE IF( LDVT2.LT.M ) THEN
  295. INFO = -16
  296. END IF
  297. IF( INFO.NE.0 ) THEN
  298. CALL XERBLA( 'DLASD3', -INFO )
  299. RETURN
  300. END IF
  301. *
  302. * Quick return if possible
  303. *
  304. IF( K.EQ.1 ) THEN
  305. D( 1 ) = ABS( Z( 1 ) )
  306. CALL DCOPY( M, VT2( 1, 1 ), LDVT2, VT( 1, 1 ), LDVT )
  307. IF( Z( 1 ).GT.ZERO ) THEN
  308. CALL DCOPY( N, U2( 1, 1 ), 1, U( 1, 1 ), 1 )
  309. ELSE
  310. DO 10 I = 1, N
  311. U( I, 1 ) = -U2( I, 1 )
  312. 10 CONTINUE
  313. END IF
  314. RETURN
  315. END IF
  316. *
  317. * Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
  318. * be computed with high relative accuracy (barring over/underflow).
  319. * This is a problem on machines without a guard digit in
  320. * add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
  321. * The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
  322. * which on any of these machines zeros out the bottommost
  323. * bit of DSIGMA(I) if it is 1; this makes the subsequent
  324. * subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
  325. * occurs. On binary machines with a guard digit (almost all
  326. * machines) it does not change DSIGMA(I) at all. On hexadecimal
  327. * and decimal machines with a guard digit, it slightly
  328. * changes the bottommost bits of DSIGMA(I). It does not account
  329. * for hexadecimal or decimal machines without guard digits
  330. * (we know of none). We use a subroutine call to compute
  331. * 2*DSIGMA(I) to prevent optimizing compilers from eliminating
  332. * this code.
  333. *
  334. DO 20 I = 1, K
  335. DSIGMA( I ) = DLAMC3( DSIGMA( I ), DSIGMA( I ) ) - DSIGMA( I )
  336. 20 CONTINUE
  337. *
  338. * Keep a copy of Z.
  339. *
  340. CALL DCOPY( K, Z, 1, Q, 1 )
  341. *
  342. * Normalize Z.
  343. *
  344. RHO = DNRM2( K, Z, 1 )
  345. CALL DLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO )
  346. RHO = RHO*RHO
  347. *
  348. * Find the new singular values.
  349. *
  350. DO 30 J = 1, K
  351. CALL DLASD4( K, J, DSIGMA, Z, U( 1, J ), RHO, D( J ),
  352. $ VT( 1, J ), INFO )
  353. *
  354. * If the zero finder fails, the computation is terminated.
  355. *
  356. IF( INFO.NE.0 ) THEN
  357. RETURN
  358. END IF
  359. 30 CONTINUE
  360. *
  361. * Compute updated Z.
  362. *
  363. DO 60 I = 1, K
  364. Z( I ) = U( I, K )*VT( I, K )
  365. DO 40 J = 1, I - 1
  366. Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
  367. $ ( DSIGMA( I )-DSIGMA( J ) ) /
  368. $ ( DSIGMA( I )+DSIGMA( J ) ) )
  369. 40 CONTINUE
  370. DO 50 J = I, K - 1
  371. Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
  372. $ ( DSIGMA( I )-DSIGMA( J+1 ) ) /
  373. $ ( DSIGMA( I )+DSIGMA( J+1 ) ) )
  374. 50 CONTINUE
  375. Z( I ) = SIGN( SQRT( ABS( Z( I ) ) ), Q( I, 1 ) )
  376. 60 CONTINUE
  377. *
  378. * Compute left singular vectors of the modified diagonal matrix,
  379. * and store related information for the right singular vectors.
  380. *
  381. DO 90 I = 1, K
  382. VT( 1, I ) = Z( 1 ) / U( 1, I ) / VT( 1, I )
  383. U( 1, I ) = NEGONE
  384. DO 70 J = 2, K
  385. VT( J, I ) = Z( J ) / U( J, I ) / VT( J, I )
  386. U( J, I ) = DSIGMA( J )*VT( J, I )
  387. 70 CONTINUE
  388. TEMP = DNRM2( K, U( 1, I ), 1 )
  389. Q( 1, I ) = U( 1, I ) / TEMP
  390. DO 80 J = 2, K
  391. JC = IDXC( J )
  392. Q( J, I ) = U( JC, I ) / TEMP
  393. 80 CONTINUE
  394. 90 CONTINUE
  395. *
  396. * Update the left singular vector matrix.
  397. *
  398. IF( K.EQ.2 ) THEN
  399. CALL DGEMM( 'N', 'N', N, K, K, ONE, U2, LDU2, Q, LDQ, ZERO, U,
  400. $ LDU )
  401. GO TO 100
  402. END IF
  403. IF( CTOT( 1 ).GT.0 ) THEN
  404. CALL DGEMM( 'N', 'N', NL, K, CTOT( 1 ), ONE, U2( 1, 2 ), LDU2,
  405. $ Q( 2, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
  406. IF( CTOT( 3 ).GT.0 ) THEN
  407. KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
  408. CALL DGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
  409. $ LDU2, Q( KTEMP, 1 ), LDQ, ONE, U( 1, 1 ), LDU )
  410. END IF
  411. ELSE IF( CTOT( 3 ).GT.0 ) THEN
  412. KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
  413. CALL DGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
  414. $ LDU2, Q( KTEMP, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
  415. ELSE
  416. CALL DLACPY( 'F', NL, K, U2, LDU2, U, LDU )
  417. END IF
  418. CALL DCOPY( K, Q( 1, 1 ), LDQ, U( NLP1, 1 ), LDU )
  419. KTEMP = 2 + CTOT( 1 )
  420. CTEMP = CTOT( 2 ) + CTOT( 3 )
  421. CALL DGEMM( 'N', 'N', NR, K, CTEMP, ONE, U2( NLP2, KTEMP ), LDU2,
  422. $ Q( KTEMP, 1 ), LDQ, ZERO, U( NLP2, 1 ), LDU )
  423. *
  424. * Generate the right singular vectors.
  425. *
  426. 100 CONTINUE
  427. DO 120 I = 1, K
  428. TEMP = DNRM2( K, VT( 1, I ), 1 )
  429. Q( I, 1 ) = VT( 1, I ) / TEMP
  430. DO 110 J = 2, K
  431. JC = IDXC( J )
  432. Q( I, J ) = VT( JC, I ) / TEMP
  433. 110 CONTINUE
  434. 120 CONTINUE
  435. *
  436. * Update the right singular vector matrix.
  437. *
  438. IF( K.EQ.2 ) THEN
  439. CALL DGEMM( 'N', 'N', K, M, K, ONE, Q, LDQ, VT2, LDVT2, ZERO,
  440. $ VT, LDVT )
  441. RETURN
  442. END IF
  443. KTEMP = 1 + CTOT( 1 )
  444. CALL DGEMM( 'N', 'N', K, NLP1, KTEMP, ONE, Q( 1, 1 ), LDQ,
  445. $ VT2( 1, 1 ), LDVT2, ZERO, VT( 1, 1 ), LDVT )
  446. KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
  447. IF( KTEMP.LE.LDVT2 )
  448. $ CALL DGEMM( 'N', 'N', K, NLP1, CTOT( 3 ), ONE, Q( 1, KTEMP ),
  449. $ LDQ, VT2( KTEMP, 1 ), LDVT2, ONE, VT( 1, 1 ),
  450. $ LDVT )
  451. *
  452. KTEMP = CTOT( 1 ) + 1
  453. NRP1 = NR + SQRE
  454. IF( KTEMP.GT.1 ) THEN
  455. DO 130 I = 1, K
  456. Q( I, KTEMP ) = Q( I, 1 )
  457. 130 CONTINUE
  458. DO 140 I = NLP2, M
  459. VT2( KTEMP, I ) = VT2( 1, I )
  460. 140 CONTINUE
  461. END IF
  462. CTEMP = 1 + CTOT( 2 ) + CTOT( 3 )
  463. CALL DGEMM( 'N', 'N', K, NRP1, CTEMP, ONE, Q( 1, KTEMP ), LDQ,
  464. $ VT2( KTEMP, NLP2 ), LDVT2, ZERO, VT( 1, NLP2 ), LDVT )
  465. *
  466. RETURN
  467. *
  468. * End of DLASD3
  469. *
  470. END