You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhemv.f 9.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337
  1. *> \brief \b ZHEMV
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
  12. *
  13. * .. Scalar Arguments ..
  14. * COMPLEX*16 ALPHA,BETA
  15. * INTEGER INCX,INCY,LDA,N
  16. * CHARACTER UPLO
  17. * ..
  18. * .. Array Arguments ..
  19. * COMPLEX*16 A(LDA,*),X(*),Y(*)
  20. * ..
  21. *
  22. *
  23. *> \par Purpose:
  24. * =============
  25. *>
  26. *> \verbatim
  27. *>
  28. *> ZHEMV performs the matrix-vector operation
  29. *>
  30. *> y := alpha*A*x + beta*y,
  31. *>
  32. *> where alpha and beta are scalars, x and y are n element vectors and
  33. *> A is an n by n hermitian matrix.
  34. *> \endverbatim
  35. *
  36. * Arguments:
  37. * ==========
  38. *
  39. *> \param[in] UPLO
  40. *> \verbatim
  41. *> UPLO is CHARACTER*1
  42. *> On entry, UPLO specifies whether the upper or lower
  43. *> triangular part of the array A is to be referenced as
  44. *> follows:
  45. *>
  46. *> UPLO = 'U' or 'u' Only the upper triangular part of A
  47. *> is to be referenced.
  48. *>
  49. *> UPLO = 'L' or 'l' Only the lower triangular part of A
  50. *> is to be referenced.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] N
  54. *> \verbatim
  55. *> N is INTEGER
  56. *> On entry, N specifies the order of the matrix A.
  57. *> N must be at least zero.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] ALPHA
  61. *> \verbatim
  62. *> ALPHA is COMPLEX*16
  63. *> On entry, ALPHA specifies the scalar alpha.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] A
  67. *> \verbatim
  68. *> A is COMPLEX*16 array of DIMENSION ( LDA, n ).
  69. *> Before entry with UPLO = 'U' or 'u', the leading n by n
  70. *> upper triangular part of the array A must contain the upper
  71. *> triangular part of the hermitian matrix and the strictly
  72. *> lower triangular part of A is not referenced.
  73. *> Before entry with UPLO = 'L' or 'l', the leading n by n
  74. *> lower triangular part of the array A must contain the lower
  75. *> triangular part of the hermitian matrix and the strictly
  76. *> upper triangular part of A is not referenced.
  77. *> Note that the imaginary parts of the diagonal elements need
  78. *> not be set and are assumed to be zero.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] LDA
  82. *> \verbatim
  83. *> LDA is INTEGER
  84. *> On entry, LDA specifies the first dimension of A as declared
  85. *> in the calling (sub) program. LDA must be at least
  86. *> max( 1, n ).
  87. *> \endverbatim
  88. *>
  89. *> \param[in] X
  90. *> \verbatim
  91. *> X is COMPLEX*16 array of dimension at least
  92. *> ( 1 + ( n - 1 )*abs( INCX ) ).
  93. *> Before entry, the incremented array X must contain the n
  94. *> element vector x.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] INCX
  98. *> \verbatim
  99. *> INCX is INTEGER
  100. *> On entry, INCX specifies the increment for the elements of
  101. *> X. INCX must not be zero.
  102. *> \endverbatim
  103. *>
  104. *> \param[in] BETA
  105. *> \verbatim
  106. *> BETA is COMPLEX*16
  107. *> On entry, BETA specifies the scalar beta. When BETA is
  108. *> supplied as zero then Y need not be set on input.
  109. *> \endverbatim
  110. *>
  111. *> \param[in,out] Y
  112. *> \verbatim
  113. *> Y is COMPLEX*16 array of dimension at least
  114. *> ( 1 + ( n - 1 )*abs( INCY ) ).
  115. *> Before entry, the incremented array Y must contain the n
  116. *> element vector y. On exit, Y is overwritten by the updated
  117. *> vector y.
  118. *> \endverbatim
  119. *>
  120. *> \param[in] INCY
  121. *> \verbatim
  122. *> INCY is INTEGER
  123. *> On entry, INCY specifies the increment for the elements of
  124. *> Y. INCY must not be zero.
  125. *> \endverbatim
  126. *
  127. * Authors:
  128. * ========
  129. *
  130. *> \author Univ. of Tennessee
  131. *> \author Univ. of California Berkeley
  132. *> \author Univ. of Colorado Denver
  133. *> \author NAG Ltd.
  134. *
  135. *> \date November 2011
  136. *
  137. *> \ingroup complex16_blas_level2
  138. *
  139. *> \par Further Details:
  140. * =====================
  141. *>
  142. *> \verbatim
  143. *>
  144. *> Level 2 Blas routine.
  145. *> The vector and matrix arguments are not referenced when N = 0, or M = 0
  146. *>
  147. *> -- Written on 22-October-1986.
  148. *> Jack Dongarra, Argonne National Lab.
  149. *> Jeremy Du Croz, Nag Central Office.
  150. *> Sven Hammarling, Nag Central Office.
  151. *> Richard Hanson, Sandia National Labs.
  152. *> \endverbatim
  153. *>
  154. * =====================================================================
  155. SUBROUTINE ZHEMV(UPLO,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
  156. *
  157. * -- Reference BLAS level2 routine (version 3.4.0) --
  158. * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
  159. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  160. * November 2011
  161. *
  162. * .. Scalar Arguments ..
  163. COMPLEX*16 ALPHA,BETA
  164. INTEGER INCX,INCY,LDA,N
  165. CHARACTER UPLO
  166. * ..
  167. * .. Array Arguments ..
  168. COMPLEX*16 A(LDA,*),X(*),Y(*)
  169. * ..
  170. *
  171. * =====================================================================
  172. *
  173. * .. Parameters ..
  174. COMPLEX*16 ONE
  175. PARAMETER (ONE= (1.0D+0,0.0D+0))
  176. COMPLEX*16 ZERO
  177. PARAMETER (ZERO= (0.0D+0,0.0D+0))
  178. * ..
  179. * .. Local Scalars ..
  180. COMPLEX*16 TEMP1,TEMP2
  181. INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY
  182. * ..
  183. * .. External Functions ..
  184. LOGICAL LSAME
  185. EXTERNAL LSAME
  186. * ..
  187. * .. External Subroutines ..
  188. EXTERNAL XERBLA
  189. * ..
  190. * .. Intrinsic Functions ..
  191. INTRINSIC DBLE,DCONJG,MAX
  192. * ..
  193. *
  194. * Test the input parameters.
  195. *
  196. INFO = 0
  197. IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
  198. INFO = 1
  199. ELSE IF (N.LT.0) THEN
  200. INFO = 2
  201. ELSE IF (LDA.LT.MAX(1,N)) THEN
  202. INFO = 5
  203. ELSE IF (INCX.EQ.0) THEN
  204. INFO = 7
  205. ELSE IF (INCY.EQ.0) THEN
  206. INFO = 10
  207. END IF
  208. IF (INFO.NE.0) THEN
  209. CALL XERBLA('ZHEMV ',INFO)
  210. RETURN
  211. END IF
  212. *
  213. * Quick return if possible.
  214. *
  215. IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
  216. *
  217. * Set up the start points in X and Y.
  218. *
  219. IF (INCX.GT.0) THEN
  220. KX = 1
  221. ELSE
  222. KX = 1 - (N-1)*INCX
  223. END IF
  224. IF (INCY.GT.0) THEN
  225. KY = 1
  226. ELSE
  227. KY = 1 - (N-1)*INCY
  228. END IF
  229. *
  230. * Start the operations. In this version the elements of A are
  231. * accessed sequentially with one pass through the triangular part
  232. * of A.
  233. *
  234. * First form y := beta*y.
  235. *
  236. IF (BETA.NE.ONE) THEN
  237. IF (INCY.EQ.1) THEN
  238. IF (BETA.EQ.ZERO) THEN
  239. DO 10 I = 1,N
  240. Y(I) = ZERO
  241. 10 CONTINUE
  242. ELSE
  243. DO 20 I = 1,N
  244. Y(I) = BETA*Y(I)
  245. 20 CONTINUE
  246. END IF
  247. ELSE
  248. IY = KY
  249. IF (BETA.EQ.ZERO) THEN
  250. DO 30 I = 1,N
  251. Y(IY) = ZERO
  252. IY = IY + INCY
  253. 30 CONTINUE
  254. ELSE
  255. DO 40 I = 1,N
  256. Y(IY) = BETA*Y(IY)
  257. IY = IY + INCY
  258. 40 CONTINUE
  259. END IF
  260. END IF
  261. END IF
  262. IF (ALPHA.EQ.ZERO) RETURN
  263. IF (LSAME(UPLO,'U')) THEN
  264. *
  265. * Form y when A is stored in upper triangle.
  266. *
  267. IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  268. DO 60 J = 1,N
  269. TEMP1 = ALPHA*X(J)
  270. TEMP2 = ZERO
  271. DO 50 I = 1,J - 1
  272. Y(I) = Y(I) + TEMP1*A(I,J)
  273. TEMP2 = TEMP2 + DCONJG(A(I,J))*X(I)
  274. 50 CONTINUE
  275. Y(J) = Y(J) + TEMP1*DBLE(A(J,J)) + ALPHA*TEMP2
  276. 60 CONTINUE
  277. ELSE
  278. JX = KX
  279. JY = KY
  280. DO 80 J = 1,N
  281. TEMP1 = ALPHA*X(JX)
  282. TEMP2 = ZERO
  283. IX = KX
  284. IY = KY
  285. DO 70 I = 1,J - 1
  286. Y(IY) = Y(IY) + TEMP1*A(I,J)
  287. TEMP2 = TEMP2 + DCONJG(A(I,J))*X(IX)
  288. IX = IX + INCX
  289. IY = IY + INCY
  290. 70 CONTINUE
  291. Y(JY) = Y(JY) + TEMP1*DBLE(A(J,J)) + ALPHA*TEMP2
  292. JX = JX + INCX
  293. JY = JY + INCY
  294. 80 CONTINUE
  295. END IF
  296. ELSE
  297. *
  298. * Form y when A is stored in lower triangle.
  299. *
  300. IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
  301. DO 100 J = 1,N
  302. TEMP1 = ALPHA*X(J)
  303. TEMP2 = ZERO
  304. Y(J) = Y(J) + TEMP1*DBLE(A(J,J))
  305. DO 90 I = J + 1,N
  306. Y(I) = Y(I) + TEMP1*A(I,J)
  307. TEMP2 = TEMP2 + DCONJG(A(I,J))*X(I)
  308. 90 CONTINUE
  309. Y(J) = Y(J) + ALPHA*TEMP2
  310. 100 CONTINUE
  311. ELSE
  312. JX = KX
  313. JY = KY
  314. DO 120 J = 1,N
  315. TEMP1 = ALPHA*X(JX)
  316. TEMP2 = ZERO
  317. Y(JY) = Y(JY) + TEMP1*DBLE(A(J,J))
  318. IX = JX
  319. IY = JY
  320. DO 110 I = J + 1,N
  321. IX = IX + INCX
  322. IY = IY + INCY
  323. Y(IY) = Y(IY) + TEMP1*A(I,J)
  324. TEMP2 = TEMP2 + DCONJG(A(I,J))*X(IX)
  325. 110 CONTINUE
  326. Y(JY) = Y(JY) + ALPHA*TEMP2
  327. JX = JX + INCX
  328. JY = JY + INCY
  329. 120 CONTINUE
  330. END IF
  331. END IF
  332. *
  333. RETURN
  334. *
  335. * End of ZHEMV .
  336. *
  337. END