You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ztrmm_kernel_8x4_zvl256b.c 56 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337
  1. /*
  2. AUTOGENERATED KERNEL
  3. Settings:
  4. LMUL=1
  5. M=8
  6. M_tail_scalar_from=1
  7. N=4
  8. __riscv_='__riscv_'
  9. complex=True
  10. conjugate=False
  11. cpu='zvl256b'
  12. force_acc_double=False
  13. index_type='BLASLONG'
  14. op='trmm'
  15. param_precision='double'
  16. reg_width_bits=256
  17. tail_policy=''
  18. trace=False
  19. Derived:
  20. ELEN_ACC=64
  21. ELEN_PARAM=64
  22. LMUL_ACC=1
  23. VFMACC='__riscv_vfmacc_vf_f64m1'
  24. VFMUL='__riscv_vfmul_vf_f64m1'
  25. VLEV='__riscv_vle64_v_f64m1'
  26. VLSEV='__riscv_vlse64_v_f64m1'
  27. VMACC_TO_ACC='__riscv_vfmacc_vf_f64m1'
  28. VMUL_TO_ACC='__riscv_vfmul_vf_f64m1'
  29. VSETVL='__riscv_vsetvl_e64m1'
  30. VSEV='__riscv_vse64_v_f64m1'
  31. VSSEV='__riscv_vsse64_v_f64m1'
  32. acc_vector_t='vfloat64m1_t'
  33. output='ztrmm_kernel_8x4_zvl256b.c'
  34. param_scalar_t='double'
  35. param_vector_t='vfloat64m1_t'
  36. */
  37. #include "common.h"
  38. #if defined(NN) || defined(NT) || defined(TN) || defined(TT)
  39. #define S0 1
  40. #define S1 -1
  41. #define S2 1
  42. #define S3 1
  43. #define VFMACC_RR __riscv_vfmsac
  44. #define VFMACC_RI __riscv_vfmacc
  45. #endif
  46. #if defined(NR) || defined(NC) || defined(TR) || defined(TC)
  47. #define S0 1
  48. #define S1 1
  49. #define S2 1
  50. #define S3 -1
  51. #define VFMACC_RR __riscv_vfmacc
  52. #define VFMACC_RI __riscv_vfmsac
  53. #endif
  54. #if defined(RN) || defined(RT) || defined(CN) || defined(CT)
  55. #define S0 1
  56. #define S1 1
  57. #define S2 -1
  58. #define S3 1
  59. #define VFMACC_RR __riscv_vfmacc
  60. #define VFMACC_RI __riscv_vfnmsac
  61. #endif
  62. #if defined(RR) || defined(RC) || defined(CR) || defined(CC)
  63. #define S0 1
  64. #define S1 -1
  65. #define S2 -1
  66. #define S3 -1
  67. #define VFMACC_RR __riscv_vfmsac
  68. #define VFMACC_RI __riscv_vfnmacc
  69. #endif
  70. #if defined(LEFT) != defined(TRANSA)
  71. #define BACKWARDS
  72. #endif
  73. int CNAME(BLASLONG M, BLASLONG N, BLASLONG K, FLOAT alphar, FLOAT alphai, FLOAT* A, FLOAT* B, FLOAT* C, BLASLONG ldc, BLASLONG offset)
  74. {
  75. BLASLONG gvl = 0;
  76. BLASLONG m_top = 0;
  77. BLASLONG n_top = 0;
  78. // -- MAIN PASS
  79. for (BLASLONG j=0; j<N/4; j+=1) {
  80. m_top = 0;
  81. BLASLONG gvl = __riscv_vsetvl_e64m1(4);
  82. for (BLASLONG i=0; i<M/8; i+=1) {
  83. BLASLONG ai=m_top*K*2;
  84. BLASLONG bi=n_top*K*2;
  85. BLASLONG pass_K = K;
  86. #ifdef LEFT
  87. BLASLONG off = offset + m_top;
  88. #else
  89. BLASLONG off = -offset + n_top;
  90. #endif
  91. #ifdef BACKWARDS
  92. ai += off*8*2;
  93. bi += off*4*2;
  94. pass_K -= off;
  95. #else
  96. #ifdef LEFT
  97. pass_K = off + 8;
  98. #else
  99. pass_K = off + 4;
  100. #endif
  101. #endif
  102. double B0r = B[bi+0*2+0];
  103. double B0i = B[bi+0*2+1];
  104. double B1r = B[bi+1*2+0];
  105. double B1i = B[bi+1*2+1];
  106. double B2r = B[bi+2*2+0];
  107. double B2i = B[bi+2*2+1];
  108. double B3r = B[bi+3*2+0];
  109. double B3i = B[bi+3*2+1];
  110. bi += 4*2;
  111. vfloat64m1_t A0r = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
  112. vfloat64m1_t A0i = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
  113. vfloat64m1_t A1r = __riscv_vlse64_v_f64m1( &A[ai+1*gvl*2], sizeof(FLOAT)*2, gvl );
  114. vfloat64m1_t A1i = __riscv_vlse64_v_f64m1( &A[ai+1*gvl*2+1], sizeof(FLOAT)*2, gvl );
  115. ai += 8*2;
  116. // 4 vector regs to hold A array contents, 16 regs to hold values accumulated over k
  117. // leaving 12 vector registers for temporaries
  118. // performing 4 operations between reuses of temporaries
  119. vfloat64m1_t tmp0r = __riscv_vfmul_vf_f64m1( A0i, B0i, gvl);
  120. vfloat64m1_t tmp0i = __riscv_vfmul_vf_f64m1( A0r, B0i, gvl);
  121. vfloat64m1_t tmp1r = __riscv_vfmul_vf_f64m1( A1i, B0i, gvl);
  122. vfloat64m1_t tmp1i = __riscv_vfmul_vf_f64m1( A1r, B0i, gvl);
  123. vfloat64m1_t tmp2r = __riscv_vfmul_vf_f64m1( A0i, B1i, gvl);
  124. vfloat64m1_t tmp2i = __riscv_vfmul_vf_f64m1( A0r, B1i, gvl);
  125. vfloat64m1_t tmp3r = __riscv_vfmul_vf_f64m1( A1i, B1i, gvl);
  126. vfloat64m1_t tmp3i = __riscv_vfmul_vf_f64m1( A1r, B1i, gvl);
  127. tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
  128. tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
  129. tmp1r = VFMACC_RR( tmp1r, B0r, A1r, gvl);
  130. tmp1i = VFMACC_RI( tmp1i, B0r, A1i, gvl);
  131. tmp2r = VFMACC_RR( tmp2r, B1r, A0r, gvl);
  132. tmp2i = VFMACC_RI( tmp2i, B1r, A0i, gvl);
  133. tmp3r = VFMACC_RR( tmp3r, B1r, A1r, gvl);
  134. tmp3i = VFMACC_RI( tmp3i, B1r, A1i, gvl);
  135. vfloat64m1_t ACC0r = tmp0r;
  136. vfloat64m1_t ACC0i = tmp0i;
  137. vfloat64m1_t ACC1r = tmp1r;
  138. vfloat64m1_t ACC1i = tmp1i;
  139. vfloat64m1_t ACC2r = tmp2r;
  140. vfloat64m1_t ACC2i = tmp2i;
  141. vfloat64m1_t ACC3r = tmp3r;
  142. vfloat64m1_t ACC3i = tmp3i;
  143. tmp0r = __riscv_vfmul_vf_f64m1( A0i, B2i, gvl);
  144. tmp0i = __riscv_vfmul_vf_f64m1( A0r, B2i, gvl);
  145. tmp1r = __riscv_vfmul_vf_f64m1( A1i, B2i, gvl);
  146. tmp1i = __riscv_vfmul_vf_f64m1( A1r, B2i, gvl);
  147. tmp2r = __riscv_vfmul_vf_f64m1( A0i, B3i, gvl);
  148. tmp2i = __riscv_vfmul_vf_f64m1( A0r, B3i, gvl);
  149. tmp3r = __riscv_vfmul_vf_f64m1( A1i, B3i, gvl);
  150. tmp3i = __riscv_vfmul_vf_f64m1( A1r, B3i, gvl);
  151. tmp0r = VFMACC_RR( tmp0r, B2r, A0r, gvl);
  152. tmp0i = VFMACC_RI( tmp0i, B2r, A0i, gvl);
  153. tmp1r = VFMACC_RR( tmp1r, B2r, A1r, gvl);
  154. tmp1i = VFMACC_RI( tmp1i, B2r, A1i, gvl);
  155. tmp2r = VFMACC_RR( tmp2r, B3r, A0r, gvl);
  156. tmp2i = VFMACC_RI( tmp2i, B3r, A0i, gvl);
  157. tmp3r = VFMACC_RR( tmp3r, B3r, A1r, gvl);
  158. tmp3i = VFMACC_RI( tmp3i, B3r, A1i, gvl);
  159. vfloat64m1_t ACC4r = tmp0r;
  160. vfloat64m1_t ACC4i = tmp0i;
  161. vfloat64m1_t ACC5r = tmp1r;
  162. vfloat64m1_t ACC5i = tmp1i;
  163. vfloat64m1_t ACC6r = tmp2r;
  164. vfloat64m1_t ACC6i = tmp2i;
  165. vfloat64m1_t ACC7r = tmp3r;
  166. vfloat64m1_t ACC7i = tmp3i;
  167. for(BLASLONG k=1; k<pass_K; k++) {
  168. B0r = B[bi+0*2+0];
  169. B0i = B[bi+0*2+1];
  170. B1r = B[bi+1*2+0];
  171. B1i = B[bi+1*2+1];
  172. B2r = B[bi+2*2+0];
  173. B2i = B[bi+2*2+1];
  174. B3r = B[bi+3*2+0];
  175. B3i = B[bi+3*2+1];
  176. bi += 4*2;
  177. A0r = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
  178. A0i = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
  179. A1r = __riscv_vlse64_v_f64m1( &A[ai+1*gvl*2], sizeof(FLOAT)*2, gvl );
  180. A1i = __riscv_vlse64_v_f64m1( &A[ai+1*gvl*2+1], sizeof(FLOAT)*2, gvl );
  181. ai += 8*2;
  182. tmp0r = __riscv_vfmul_vf_f64m1( A0i, B0i, gvl);
  183. tmp0i = __riscv_vfmul_vf_f64m1( A0r, B0i, gvl);
  184. tmp1r = __riscv_vfmul_vf_f64m1( A1i, B0i, gvl);
  185. tmp1i = __riscv_vfmul_vf_f64m1( A1r, B0i, gvl);
  186. tmp2r = __riscv_vfmul_vf_f64m1( A0i, B1i, gvl);
  187. tmp2i = __riscv_vfmul_vf_f64m1( A0r, B1i, gvl);
  188. tmp3r = __riscv_vfmul_vf_f64m1( A1i, B1i, gvl);
  189. tmp3i = __riscv_vfmul_vf_f64m1( A1r, B1i, gvl);
  190. tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
  191. tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
  192. tmp1r = VFMACC_RR( tmp1r, B0r, A1r, gvl);
  193. tmp1i = VFMACC_RI( tmp1i, B0r, A1i, gvl);
  194. tmp2r = VFMACC_RR( tmp2r, B1r, A0r, gvl);
  195. tmp2i = VFMACC_RI( tmp2i, B1r, A0i, gvl);
  196. tmp3r = VFMACC_RR( tmp3r, B1r, A1r, gvl);
  197. tmp3i = VFMACC_RI( tmp3i, B1r, A1i, gvl);
  198. ACC0r = __riscv_vfadd( ACC0r, tmp0r, gvl);
  199. ACC0i = __riscv_vfadd( ACC0i, tmp0i, gvl);
  200. ACC1r = __riscv_vfadd( ACC1r, tmp1r, gvl);
  201. ACC1i = __riscv_vfadd( ACC1i, tmp1i, gvl);
  202. ACC2r = __riscv_vfadd( ACC2r, tmp2r, gvl);
  203. ACC2i = __riscv_vfadd( ACC2i, tmp2i, gvl);
  204. ACC3r = __riscv_vfadd( ACC3r, tmp3r, gvl);
  205. ACC3i = __riscv_vfadd( ACC3i, tmp3i, gvl);
  206. tmp0r = __riscv_vfmul_vf_f64m1( A0i, B2i, gvl);
  207. tmp0i = __riscv_vfmul_vf_f64m1( A0r, B2i, gvl);
  208. tmp1r = __riscv_vfmul_vf_f64m1( A1i, B2i, gvl);
  209. tmp1i = __riscv_vfmul_vf_f64m1( A1r, B2i, gvl);
  210. tmp2r = __riscv_vfmul_vf_f64m1( A0i, B3i, gvl);
  211. tmp2i = __riscv_vfmul_vf_f64m1( A0r, B3i, gvl);
  212. tmp3r = __riscv_vfmul_vf_f64m1( A1i, B3i, gvl);
  213. tmp3i = __riscv_vfmul_vf_f64m1( A1r, B3i, gvl);
  214. tmp0r = VFMACC_RR( tmp0r, B2r, A0r, gvl);
  215. tmp0i = VFMACC_RI( tmp0i, B2r, A0i, gvl);
  216. tmp1r = VFMACC_RR( tmp1r, B2r, A1r, gvl);
  217. tmp1i = VFMACC_RI( tmp1i, B2r, A1i, gvl);
  218. tmp2r = VFMACC_RR( tmp2r, B3r, A0r, gvl);
  219. tmp2i = VFMACC_RI( tmp2i, B3r, A0i, gvl);
  220. tmp3r = VFMACC_RR( tmp3r, B3r, A1r, gvl);
  221. tmp3i = VFMACC_RI( tmp3i, B3r, A1i, gvl);
  222. ACC4r = __riscv_vfadd( ACC4r, tmp0r, gvl);
  223. ACC4i = __riscv_vfadd( ACC4i, tmp0i, gvl);
  224. ACC5r = __riscv_vfadd( ACC5r, tmp1r, gvl);
  225. ACC5i = __riscv_vfadd( ACC5i, tmp1i, gvl);
  226. ACC6r = __riscv_vfadd( ACC6r, tmp2r, gvl);
  227. ACC6i = __riscv_vfadd( ACC6i, tmp2i, gvl);
  228. ACC7r = __riscv_vfadd( ACC7r, tmp3r, gvl);
  229. ACC7i = __riscv_vfadd( ACC7i, tmp3i, gvl);
  230. }
  231. BLASLONG ci=n_top*ldc+m_top;
  232. vfloat64m1_t C0r = __riscv_vfmul( ACC0r, alphar, gvl );
  233. vfloat64m1_t C0i = __riscv_vfmul( ACC0i, alphar, gvl );
  234. vfloat64m1_t C1r = __riscv_vfmul( ACC1r, alphar, gvl );
  235. vfloat64m1_t C1i = __riscv_vfmul( ACC1i, alphar, gvl );
  236. vfloat64m1_t C2r = __riscv_vfmul( ACC2r, alphar, gvl );
  237. vfloat64m1_t C2i = __riscv_vfmul( ACC2i, alphar, gvl );
  238. vfloat64m1_t C3r = __riscv_vfmul( ACC3r, alphar, gvl );
  239. vfloat64m1_t C3i = __riscv_vfmul( ACC3i, alphar, gvl );
  240. vfloat64m1_t C4r = __riscv_vfmul( ACC4r, alphar, gvl );
  241. vfloat64m1_t C4i = __riscv_vfmul( ACC4i, alphar, gvl );
  242. vfloat64m1_t C5r = __riscv_vfmul( ACC5r, alphar, gvl );
  243. vfloat64m1_t C5i = __riscv_vfmul( ACC5i, alphar, gvl );
  244. vfloat64m1_t C6r = __riscv_vfmul( ACC6r, alphar, gvl );
  245. vfloat64m1_t C6i = __riscv_vfmul( ACC6i, alphar, gvl );
  246. vfloat64m1_t C7r = __riscv_vfmul( ACC7r, alphar, gvl );
  247. vfloat64m1_t C7i = __riscv_vfmul( ACC7i, alphar, gvl );
  248. C0r = __riscv_vfnmsac( C0r, alphai, ACC0i, gvl );
  249. C0i = __riscv_vfmacc ( C0i, alphai, ACC0r, gvl );
  250. C1r = __riscv_vfnmsac( C1r, alphai, ACC1i, gvl );
  251. C1i = __riscv_vfmacc ( C1i, alphai, ACC1r, gvl );
  252. C2r = __riscv_vfnmsac( C2r, alphai, ACC2i, gvl );
  253. C2i = __riscv_vfmacc ( C2i, alphai, ACC2r, gvl );
  254. C3r = __riscv_vfnmsac( C3r, alphai, ACC3i, gvl );
  255. C3i = __riscv_vfmacc ( C3i, alphai, ACC3r, gvl );
  256. C4r = __riscv_vfnmsac( C4r, alphai, ACC4i, gvl );
  257. C4i = __riscv_vfmacc ( C4i, alphai, ACC4r, gvl );
  258. C5r = __riscv_vfnmsac( C5r, alphai, ACC5i, gvl );
  259. C5i = __riscv_vfmacc ( C5i, alphai, ACC5r, gvl );
  260. C6r = __riscv_vfnmsac( C6r, alphai, ACC6i, gvl );
  261. C6i = __riscv_vfmacc ( C6i, alphai, ACC6r, gvl );
  262. C7r = __riscv_vfnmsac( C7r, alphai, ACC7i, gvl );
  263. C7i = __riscv_vfmacc ( C7i, alphai, ACC7r, gvl );
  264. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C0r, gvl);
  265. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C0i, gvl);
  266. ci += gvl;
  267. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C1r, gvl);
  268. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C1i, gvl);
  269. ci += ldc-gvl*1;
  270. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C2r, gvl);
  271. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C2i, gvl);
  272. ci += gvl;
  273. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C3r, gvl);
  274. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C3i, gvl);
  275. ci += ldc-gvl*1;
  276. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C4r, gvl);
  277. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C4i, gvl);
  278. ci += gvl;
  279. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C5r, gvl);
  280. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C5i, gvl);
  281. ci += ldc-gvl*1;
  282. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C6r, gvl);
  283. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C6i, gvl);
  284. ci += gvl;
  285. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C7r, gvl);
  286. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C7i, gvl);
  287. m_top += 8;
  288. }
  289. // -- tails for main pass
  290. if( M & 4 ) {
  291. gvl = __riscv_vsetvl_e64m1(4);
  292. BLASLONG ai=m_top*K*2;
  293. BLASLONG bi=n_top*K*2;
  294. BLASLONG pass_K = K;
  295. #ifdef LEFT
  296. BLASLONG off = offset + m_top;
  297. #else
  298. BLASLONG off = -offset + n_top;
  299. #endif
  300. #ifdef BACKWARDS
  301. ai += off*4*2;
  302. bi += off*4*2;
  303. pass_K -= off;
  304. #else
  305. #ifdef LEFT
  306. pass_K = off + 4;
  307. #else
  308. pass_K = off + 4;
  309. #endif
  310. #endif
  311. double B0r = B[bi+0*2+0];
  312. double B0i = B[bi+0*2+1];
  313. double B1r = B[bi+1*2+0];
  314. double B1i = B[bi+1*2+1];
  315. double B2r = B[bi+2*2+0];
  316. double B2i = B[bi+2*2+1];
  317. double B3r = B[bi+3*2+0];
  318. double B3i = B[bi+3*2+1];
  319. bi += 4*2;
  320. vfloat64m1_t A0r = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
  321. vfloat64m1_t A0i = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
  322. ai += 4*2;
  323. // 2 vector regs to hold A array contents, 8 regs to hold values accumulated over k
  324. // leaving 22 vector registers for temporaries
  325. vfloat64m1_t tmp0r = __riscv_vfmul_vf_f64m1( A0i, B0i, gvl);
  326. vfloat64m1_t tmp0i = __riscv_vfmul_vf_f64m1( A0r, B0i, gvl);
  327. vfloat64m1_t tmp1r = __riscv_vfmul_vf_f64m1( A0i, B1i, gvl);
  328. vfloat64m1_t tmp1i = __riscv_vfmul_vf_f64m1( A0r, B1i, gvl);
  329. vfloat64m1_t tmp2r = __riscv_vfmul_vf_f64m1( A0i, B2i, gvl);
  330. vfloat64m1_t tmp2i = __riscv_vfmul_vf_f64m1( A0r, B2i, gvl);
  331. vfloat64m1_t tmp3r = __riscv_vfmul_vf_f64m1( A0i, B3i, gvl);
  332. vfloat64m1_t tmp3i = __riscv_vfmul_vf_f64m1( A0r, B3i, gvl);
  333. tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
  334. tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
  335. tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
  336. tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
  337. tmp2r = VFMACC_RR( tmp2r, B2r, A0r, gvl);
  338. tmp2i = VFMACC_RI( tmp2i, B2r, A0i, gvl);
  339. tmp3r = VFMACC_RR( tmp3r, B3r, A0r, gvl);
  340. tmp3i = VFMACC_RI( tmp3i, B3r, A0i, gvl);
  341. vfloat64m1_t ACC0r = tmp0r;
  342. vfloat64m1_t ACC0i = tmp0i;
  343. vfloat64m1_t ACC1r = tmp1r;
  344. vfloat64m1_t ACC1i = tmp1i;
  345. vfloat64m1_t ACC2r = tmp2r;
  346. vfloat64m1_t ACC2i = tmp2i;
  347. vfloat64m1_t ACC3r = tmp3r;
  348. vfloat64m1_t ACC3i = tmp3i;
  349. for(BLASLONG k=1; k<pass_K; k++) {
  350. B0r = B[bi+0*2+0];
  351. B0i = B[bi+0*2+1];
  352. B1r = B[bi+1*2+0];
  353. B1i = B[bi+1*2+1];
  354. B2r = B[bi+2*2+0];
  355. B2i = B[bi+2*2+1];
  356. B3r = B[bi+3*2+0];
  357. B3i = B[bi+3*2+1];
  358. bi += 4*2;
  359. A0r = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
  360. A0i = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
  361. ai += 4*2;
  362. tmp0r = __riscv_vfmul_vf_f64m1( A0i, B0i, gvl);
  363. tmp0i = __riscv_vfmul_vf_f64m1( A0r, B0i, gvl);
  364. tmp1r = __riscv_vfmul_vf_f64m1( A0i, B1i, gvl);
  365. tmp1i = __riscv_vfmul_vf_f64m1( A0r, B1i, gvl);
  366. tmp2r = __riscv_vfmul_vf_f64m1( A0i, B2i, gvl);
  367. tmp2i = __riscv_vfmul_vf_f64m1( A0r, B2i, gvl);
  368. tmp3r = __riscv_vfmul_vf_f64m1( A0i, B3i, gvl);
  369. tmp3i = __riscv_vfmul_vf_f64m1( A0r, B3i, gvl);
  370. tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
  371. tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
  372. tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
  373. tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
  374. tmp2r = VFMACC_RR( tmp2r, B2r, A0r, gvl);
  375. tmp2i = VFMACC_RI( tmp2i, B2r, A0i, gvl);
  376. tmp3r = VFMACC_RR( tmp3r, B3r, A0r, gvl);
  377. tmp3i = VFMACC_RI( tmp3i, B3r, A0i, gvl);
  378. ACC0r = __riscv_vfadd( ACC0r, tmp0r, gvl);
  379. ACC0i = __riscv_vfadd( ACC0i, tmp0i, gvl);
  380. ACC1r = __riscv_vfadd( ACC1r, tmp1r, gvl);
  381. ACC1i = __riscv_vfadd( ACC1i, tmp1i, gvl);
  382. ACC2r = __riscv_vfadd( ACC2r, tmp2r, gvl);
  383. ACC2i = __riscv_vfadd( ACC2i, tmp2i, gvl);
  384. ACC3r = __riscv_vfadd( ACC3r, tmp3r, gvl);
  385. ACC3i = __riscv_vfadd( ACC3i, tmp3i, gvl);
  386. }
  387. BLASLONG ci=n_top*ldc+m_top;
  388. vfloat64m1_t C0r = __riscv_vfmul( ACC0r, alphar, gvl );
  389. vfloat64m1_t C0i = __riscv_vfmul( ACC0i, alphar, gvl );
  390. vfloat64m1_t C1r = __riscv_vfmul( ACC1r, alphar, gvl );
  391. vfloat64m1_t C1i = __riscv_vfmul( ACC1i, alphar, gvl );
  392. vfloat64m1_t C2r = __riscv_vfmul( ACC2r, alphar, gvl );
  393. vfloat64m1_t C2i = __riscv_vfmul( ACC2i, alphar, gvl );
  394. vfloat64m1_t C3r = __riscv_vfmul( ACC3r, alphar, gvl );
  395. vfloat64m1_t C3i = __riscv_vfmul( ACC3i, alphar, gvl );
  396. C0r = __riscv_vfnmsac( C0r, alphai, ACC0i, gvl );
  397. C0i = __riscv_vfmacc ( C0i, alphai, ACC0r, gvl );
  398. C1r = __riscv_vfnmsac( C1r, alphai, ACC1i, gvl );
  399. C1i = __riscv_vfmacc ( C1i, alphai, ACC1r, gvl );
  400. C2r = __riscv_vfnmsac( C2r, alphai, ACC2i, gvl );
  401. C2i = __riscv_vfmacc ( C2i, alphai, ACC2r, gvl );
  402. C3r = __riscv_vfnmsac( C3r, alphai, ACC3i, gvl );
  403. C3i = __riscv_vfmacc ( C3i, alphai, ACC3r, gvl );
  404. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C0r, gvl);
  405. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C0i, gvl);
  406. ci += ldc-gvl*0;
  407. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C1r, gvl);
  408. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C1i, gvl);
  409. ci += ldc-gvl*0;
  410. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C2r, gvl);
  411. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C2i, gvl);
  412. ci += ldc-gvl*0;
  413. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C3r, gvl);
  414. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C3i, gvl);
  415. m_top += 4;
  416. }
  417. if( M & 2 ) {
  418. gvl = __riscv_vsetvl_e64m1(2);
  419. BLASLONG ai=m_top*K*2;
  420. BLASLONG bi=n_top*K*2;
  421. BLASLONG pass_K = K;
  422. #ifdef LEFT
  423. BLASLONG off = offset + m_top;
  424. #else
  425. BLASLONG off = -offset + n_top;
  426. #endif
  427. #ifdef BACKWARDS
  428. ai += off*2*2;
  429. bi += off*4*2;
  430. pass_K -= off;
  431. #else
  432. #ifdef LEFT
  433. pass_K = off + 2;
  434. #else
  435. pass_K = off + 4;
  436. #endif
  437. #endif
  438. double B0r = B[bi+0*2+0];
  439. double B0i = B[bi+0*2+1];
  440. double B1r = B[bi+1*2+0];
  441. double B1i = B[bi+1*2+1];
  442. double B2r = B[bi+2*2+0];
  443. double B2i = B[bi+2*2+1];
  444. double B3r = B[bi+3*2+0];
  445. double B3i = B[bi+3*2+1];
  446. bi += 4*2;
  447. vfloat64m1_t A0r = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
  448. vfloat64m1_t A0i = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
  449. ai += 2*2;
  450. // 2 vector regs to hold A array contents, 8 regs to hold values accumulated over k
  451. // leaving 22 vector registers for temporaries
  452. vfloat64m1_t tmp0r = __riscv_vfmul_vf_f64m1( A0i, B0i, gvl);
  453. vfloat64m1_t tmp0i = __riscv_vfmul_vf_f64m1( A0r, B0i, gvl);
  454. vfloat64m1_t tmp1r = __riscv_vfmul_vf_f64m1( A0i, B1i, gvl);
  455. vfloat64m1_t tmp1i = __riscv_vfmul_vf_f64m1( A0r, B1i, gvl);
  456. vfloat64m1_t tmp2r = __riscv_vfmul_vf_f64m1( A0i, B2i, gvl);
  457. vfloat64m1_t tmp2i = __riscv_vfmul_vf_f64m1( A0r, B2i, gvl);
  458. vfloat64m1_t tmp3r = __riscv_vfmul_vf_f64m1( A0i, B3i, gvl);
  459. vfloat64m1_t tmp3i = __riscv_vfmul_vf_f64m1( A0r, B3i, gvl);
  460. tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
  461. tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
  462. tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
  463. tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
  464. tmp2r = VFMACC_RR( tmp2r, B2r, A0r, gvl);
  465. tmp2i = VFMACC_RI( tmp2i, B2r, A0i, gvl);
  466. tmp3r = VFMACC_RR( tmp3r, B3r, A0r, gvl);
  467. tmp3i = VFMACC_RI( tmp3i, B3r, A0i, gvl);
  468. vfloat64m1_t ACC0r = tmp0r;
  469. vfloat64m1_t ACC0i = tmp0i;
  470. vfloat64m1_t ACC1r = tmp1r;
  471. vfloat64m1_t ACC1i = tmp1i;
  472. vfloat64m1_t ACC2r = tmp2r;
  473. vfloat64m1_t ACC2i = tmp2i;
  474. vfloat64m1_t ACC3r = tmp3r;
  475. vfloat64m1_t ACC3i = tmp3i;
  476. for(BLASLONG k=1; k<pass_K; k++) {
  477. B0r = B[bi+0*2+0];
  478. B0i = B[bi+0*2+1];
  479. B1r = B[bi+1*2+0];
  480. B1i = B[bi+1*2+1];
  481. B2r = B[bi+2*2+0];
  482. B2i = B[bi+2*2+1];
  483. B3r = B[bi+3*2+0];
  484. B3i = B[bi+3*2+1];
  485. bi += 4*2;
  486. A0r = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
  487. A0i = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
  488. ai += 2*2;
  489. tmp0r = __riscv_vfmul_vf_f64m1( A0i, B0i, gvl);
  490. tmp0i = __riscv_vfmul_vf_f64m1( A0r, B0i, gvl);
  491. tmp1r = __riscv_vfmul_vf_f64m1( A0i, B1i, gvl);
  492. tmp1i = __riscv_vfmul_vf_f64m1( A0r, B1i, gvl);
  493. tmp2r = __riscv_vfmul_vf_f64m1( A0i, B2i, gvl);
  494. tmp2i = __riscv_vfmul_vf_f64m1( A0r, B2i, gvl);
  495. tmp3r = __riscv_vfmul_vf_f64m1( A0i, B3i, gvl);
  496. tmp3i = __riscv_vfmul_vf_f64m1( A0r, B3i, gvl);
  497. tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
  498. tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
  499. tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
  500. tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
  501. tmp2r = VFMACC_RR( tmp2r, B2r, A0r, gvl);
  502. tmp2i = VFMACC_RI( tmp2i, B2r, A0i, gvl);
  503. tmp3r = VFMACC_RR( tmp3r, B3r, A0r, gvl);
  504. tmp3i = VFMACC_RI( tmp3i, B3r, A0i, gvl);
  505. ACC0r = __riscv_vfadd( ACC0r, tmp0r, gvl);
  506. ACC0i = __riscv_vfadd( ACC0i, tmp0i, gvl);
  507. ACC1r = __riscv_vfadd( ACC1r, tmp1r, gvl);
  508. ACC1i = __riscv_vfadd( ACC1i, tmp1i, gvl);
  509. ACC2r = __riscv_vfadd( ACC2r, tmp2r, gvl);
  510. ACC2i = __riscv_vfadd( ACC2i, tmp2i, gvl);
  511. ACC3r = __riscv_vfadd( ACC3r, tmp3r, gvl);
  512. ACC3i = __riscv_vfadd( ACC3i, tmp3i, gvl);
  513. }
  514. BLASLONG ci=n_top*ldc+m_top;
  515. vfloat64m1_t C0r = __riscv_vfmul( ACC0r, alphar, gvl );
  516. vfloat64m1_t C0i = __riscv_vfmul( ACC0i, alphar, gvl );
  517. vfloat64m1_t C1r = __riscv_vfmul( ACC1r, alphar, gvl );
  518. vfloat64m1_t C1i = __riscv_vfmul( ACC1i, alphar, gvl );
  519. vfloat64m1_t C2r = __riscv_vfmul( ACC2r, alphar, gvl );
  520. vfloat64m1_t C2i = __riscv_vfmul( ACC2i, alphar, gvl );
  521. vfloat64m1_t C3r = __riscv_vfmul( ACC3r, alphar, gvl );
  522. vfloat64m1_t C3i = __riscv_vfmul( ACC3i, alphar, gvl );
  523. C0r = __riscv_vfnmsac( C0r, alphai, ACC0i, gvl );
  524. C0i = __riscv_vfmacc ( C0i, alphai, ACC0r, gvl );
  525. C1r = __riscv_vfnmsac( C1r, alphai, ACC1i, gvl );
  526. C1i = __riscv_vfmacc ( C1i, alphai, ACC1r, gvl );
  527. C2r = __riscv_vfnmsac( C2r, alphai, ACC2i, gvl );
  528. C2i = __riscv_vfmacc ( C2i, alphai, ACC2r, gvl );
  529. C3r = __riscv_vfnmsac( C3r, alphai, ACC3i, gvl );
  530. C3i = __riscv_vfmacc ( C3i, alphai, ACC3r, gvl );
  531. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C0r, gvl);
  532. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C0i, gvl);
  533. ci += ldc-gvl*0;
  534. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C1r, gvl);
  535. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C1i, gvl);
  536. ci += ldc-gvl*0;
  537. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C2r, gvl);
  538. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C2i, gvl);
  539. ci += ldc-gvl*0;
  540. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C3r, gvl);
  541. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C3i, gvl);
  542. m_top += 2;
  543. }
  544. if( M & 1 ) {
  545. double result0 = 0;
  546. double result1 = 0;
  547. double result2 = 0;
  548. double result3 = 0;
  549. double result4 = 0;
  550. double result5 = 0;
  551. double result6 = 0;
  552. double result7 = 0;
  553. BLASLONG ai=m_top*K*2;
  554. BLASLONG bi=n_top*K*2;
  555. BLASLONG pass_K = K;
  556. #ifdef LEFT
  557. BLASLONG off = offset + m_top;
  558. #else
  559. BLASLONG off = -offset + n_top;
  560. #endif
  561. #ifdef BACKWARDS
  562. ai += off*1*2;
  563. bi += off*4*2;
  564. pass_K -= off;
  565. #else
  566. #ifdef LEFT
  567. pass_K = off + 1;
  568. #else
  569. pass_K = off + 4;
  570. #endif
  571. #endif
  572. for(BLASLONG k=0; k<pass_K; k++) {
  573. result0+=S0*A[ai+0+0]*B[bi+0+0] + S1*A[ai+0+1]*B[bi+0+1];
  574. result1+=S2*A[ai+0+1]*B[bi+0+0] + S3*A[ai+0+0]*B[bi+0+1];
  575. result2+=S0*A[ai+0+0]*B[bi+2+0] + S1*A[ai+0+1]*B[bi+2+1];
  576. result3+=S2*A[ai+0+1]*B[bi+2+0] + S3*A[ai+0+0]*B[bi+2+1];
  577. result4+=S0*A[ai+0+0]*B[bi+4+0] + S1*A[ai+0+1]*B[bi+4+1];
  578. result5+=S2*A[ai+0+1]*B[bi+4+0] + S3*A[ai+0+0]*B[bi+4+1];
  579. result6+=S0*A[ai+0+0]*B[bi+6+0] + S1*A[ai+0+1]*B[bi+6+1];
  580. result7+=S2*A[ai+0+1]*B[bi+6+0] + S3*A[ai+0+0]*B[bi+6+1];
  581. ai+=1*2;
  582. bi+=4*2;
  583. }
  584. BLASLONG ci=n_top*ldc+m_top;
  585. double Cr, Ci;
  586. Cr = result0*alphar;
  587. Ci = result1*alphar;
  588. Cr -= result1*alphai;
  589. Ci += result0*alphai;
  590. C[(ci+0*ldc+0)*2+0] = Cr;
  591. C[(ci+0*ldc+0)*2+1] = Ci;
  592. Cr = result2*alphar;
  593. Ci = result3*alphar;
  594. Cr -= result3*alphai;
  595. Ci += result2*alphai;
  596. C[(ci+1*ldc+0)*2+0] = Cr;
  597. C[(ci+1*ldc+0)*2+1] = Ci;
  598. Cr = result4*alphar;
  599. Ci = result5*alphar;
  600. Cr -= result5*alphai;
  601. Ci += result4*alphai;
  602. C[(ci+2*ldc+0)*2+0] = Cr;
  603. C[(ci+2*ldc+0)*2+1] = Ci;
  604. Cr = result6*alphar;
  605. Ci = result7*alphar;
  606. Cr -= result7*alphai;
  607. Ci += result6*alphai;
  608. C[(ci+3*ldc+0)*2+0] = Cr;
  609. C[(ci+3*ldc+0)*2+1] = Ci;
  610. m_top+=1;
  611. }
  612. n_top += 4;
  613. }
  614. // -- tails for N=2
  615. if( N & 2 ) {
  616. gvl = __riscv_vsetvl_e64m1(4);
  617. m_top = 0;
  618. for (BLASLONG i=0; i<M/8; i+=1) {
  619. BLASLONG ai=m_top*K*2;
  620. BLASLONG bi=n_top*K*2;
  621. BLASLONG pass_K = K;
  622. #ifdef LEFT
  623. BLASLONG off = offset + m_top;
  624. #else
  625. BLASLONG off = -offset + n_top;
  626. #endif
  627. #ifdef BACKWARDS
  628. ai += off*8*2;
  629. bi += off*2*2;
  630. pass_K -= off;
  631. #else
  632. #ifdef LEFT
  633. pass_K = off + 8;
  634. #else
  635. pass_K = off + 2;
  636. #endif
  637. #endif
  638. double B0r = B[bi+0*2+0];
  639. double B0i = B[bi+0*2+1];
  640. double B1r = B[bi+1*2+0];
  641. double B1i = B[bi+1*2+1];
  642. bi += 2*2;
  643. vfloat64m1_t A0r = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
  644. vfloat64m1_t A0i = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
  645. vfloat64m1_t A1r = __riscv_vlse64_v_f64m1( &A[ai+1*gvl*2], sizeof(FLOAT)*2, gvl );
  646. vfloat64m1_t A1i = __riscv_vlse64_v_f64m1( &A[ai+1*gvl*2+1], sizeof(FLOAT)*2, gvl );
  647. ai += 8*2;
  648. // 4 vector regs to hold A array contents, 8 regs to hold values accumulated over k
  649. // leaving 20 vector registers for temporaries
  650. vfloat64m1_t tmp0r = __riscv_vfmul_vf_f64m1( A0i, B0i, gvl);
  651. vfloat64m1_t tmp0i = __riscv_vfmul_vf_f64m1( A0r, B0i, gvl);
  652. vfloat64m1_t tmp1r = __riscv_vfmul_vf_f64m1( A1i, B0i, gvl);
  653. vfloat64m1_t tmp1i = __riscv_vfmul_vf_f64m1( A1r, B0i, gvl);
  654. vfloat64m1_t tmp2r = __riscv_vfmul_vf_f64m1( A0i, B1i, gvl);
  655. vfloat64m1_t tmp2i = __riscv_vfmul_vf_f64m1( A0r, B1i, gvl);
  656. vfloat64m1_t tmp3r = __riscv_vfmul_vf_f64m1( A1i, B1i, gvl);
  657. vfloat64m1_t tmp3i = __riscv_vfmul_vf_f64m1( A1r, B1i, gvl);
  658. tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
  659. tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
  660. tmp1r = VFMACC_RR( tmp1r, B0r, A1r, gvl);
  661. tmp1i = VFMACC_RI( tmp1i, B0r, A1i, gvl);
  662. tmp2r = VFMACC_RR( tmp2r, B1r, A0r, gvl);
  663. tmp2i = VFMACC_RI( tmp2i, B1r, A0i, gvl);
  664. tmp3r = VFMACC_RR( tmp3r, B1r, A1r, gvl);
  665. tmp3i = VFMACC_RI( tmp3i, B1r, A1i, gvl);
  666. vfloat64m1_t ACC0r = tmp0r;
  667. vfloat64m1_t ACC0i = tmp0i;
  668. vfloat64m1_t ACC1r = tmp1r;
  669. vfloat64m1_t ACC1i = tmp1i;
  670. vfloat64m1_t ACC2r = tmp2r;
  671. vfloat64m1_t ACC2i = tmp2i;
  672. vfloat64m1_t ACC3r = tmp3r;
  673. vfloat64m1_t ACC3i = tmp3i;
  674. for(BLASLONG k=1; k<pass_K; k++) {
  675. B0r = B[bi+0*2+0];
  676. B0i = B[bi+0*2+1];
  677. B1r = B[bi+1*2+0];
  678. B1i = B[bi+1*2+1];
  679. bi += 2*2;
  680. A0r = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
  681. A0i = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
  682. A1r = __riscv_vlse64_v_f64m1( &A[ai+1*gvl*2], sizeof(FLOAT)*2, gvl );
  683. A1i = __riscv_vlse64_v_f64m1( &A[ai+1*gvl*2+1], sizeof(FLOAT)*2, gvl );
  684. ai += 8*2;
  685. tmp0r = __riscv_vfmul_vf_f64m1( A0i, B0i, gvl);
  686. tmp0i = __riscv_vfmul_vf_f64m1( A0r, B0i, gvl);
  687. tmp1r = __riscv_vfmul_vf_f64m1( A1i, B0i, gvl);
  688. tmp1i = __riscv_vfmul_vf_f64m1( A1r, B0i, gvl);
  689. tmp2r = __riscv_vfmul_vf_f64m1( A0i, B1i, gvl);
  690. tmp2i = __riscv_vfmul_vf_f64m1( A0r, B1i, gvl);
  691. tmp3r = __riscv_vfmul_vf_f64m1( A1i, B1i, gvl);
  692. tmp3i = __riscv_vfmul_vf_f64m1( A1r, B1i, gvl);
  693. tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
  694. tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
  695. tmp1r = VFMACC_RR( tmp1r, B0r, A1r, gvl);
  696. tmp1i = VFMACC_RI( tmp1i, B0r, A1i, gvl);
  697. tmp2r = VFMACC_RR( tmp2r, B1r, A0r, gvl);
  698. tmp2i = VFMACC_RI( tmp2i, B1r, A0i, gvl);
  699. tmp3r = VFMACC_RR( tmp3r, B1r, A1r, gvl);
  700. tmp3i = VFMACC_RI( tmp3i, B1r, A1i, gvl);
  701. ACC0r = __riscv_vfadd( ACC0r, tmp0r, gvl);
  702. ACC0i = __riscv_vfadd( ACC0i, tmp0i, gvl);
  703. ACC1r = __riscv_vfadd( ACC1r, tmp1r, gvl);
  704. ACC1i = __riscv_vfadd( ACC1i, tmp1i, gvl);
  705. ACC2r = __riscv_vfadd( ACC2r, tmp2r, gvl);
  706. ACC2i = __riscv_vfadd( ACC2i, tmp2i, gvl);
  707. ACC3r = __riscv_vfadd( ACC3r, tmp3r, gvl);
  708. ACC3i = __riscv_vfadd( ACC3i, tmp3i, gvl);
  709. }
  710. BLASLONG ci=n_top*ldc+m_top;
  711. vfloat64m1_t C0r = __riscv_vfmul( ACC0r, alphar, gvl );
  712. vfloat64m1_t C0i = __riscv_vfmul( ACC0i, alphar, gvl );
  713. vfloat64m1_t C1r = __riscv_vfmul( ACC1r, alphar, gvl );
  714. vfloat64m1_t C1i = __riscv_vfmul( ACC1i, alphar, gvl );
  715. vfloat64m1_t C2r = __riscv_vfmul( ACC2r, alphar, gvl );
  716. vfloat64m1_t C2i = __riscv_vfmul( ACC2i, alphar, gvl );
  717. vfloat64m1_t C3r = __riscv_vfmul( ACC3r, alphar, gvl );
  718. vfloat64m1_t C3i = __riscv_vfmul( ACC3i, alphar, gvl );
  719. C0r = __riscv_vfnmsac( C0r, alphai, ACC0i, gvl );
  720. C0i = __riscv_vfmacc ( C0i, alphai, ACC0r, gvl );
  721. C1r = __riscv_vfnmsac( C1r, alphai, ACC1i, gvl );
  722. C1i = __riscv_vfmacc ( C1i, alphai, ACC1r, gvl );
  723. C2r = __riscv_vfnmsac( C2r, alphai, ACC2i, gvl );
  724. C2i = __riscv_vfmacc ( C2i, alphai, ACC2r, gvl );
  725. C3r = __riscv_vfnmsac( C3r, alphai, ACC3i, gvl );
  726. C3i = __riscv_vfmacc ( C3i, alphai, ACC3r, gvl );
  727. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C0r, gvl);
  728. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C0i, gvl);
  729. ci += gvl;
  730. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C1r, gvl);
  731. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C1i, gvl);
  732. ci += ldc-gvl*1;
  733. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C2r, gvl);
  734. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C2i, gvl);
  735. ci += gvl;
  736. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C3r, gvl);
  737. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C3i, gvl);
  738. m_top += 8;
  739. }
  740. if( M & 4 ) {
  741. gvl = __riscv_vsetvl_e64m1(4);
  742. BLASLONG ai=m_top*K*2;
  743. BLASLONG bi=n_top*K*2;
  744. BLASLONG pass_K = K;
  745. #ifdef LEFT
  746. BLASLONG off = offset + m_top;
  747. #else
  748. BLASLONG off = -offset + n_top;
  749. #endif
  750. #ifdef BACKWARDS
  751. ai += off*4*2;
  752. bi += off*2*2;
  753. pass_K -= off;
  754. #else
  755. #ifdef LEFT
  756. pass_K = off + 4;
  757. #else
  758. pass_K = off + 2;
  759. #endif
  760. #endif
  761. double B0r = B[bi+0*2+0];
  762. double B0i = B[bi+0*2+1];
  763. double B1r = B[bi+1*2+0];
  764. double B1i = B[bi+1*2+1];
  765. bi += 2*2;
  766. vfloat64m1_t A0r = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
  767. vfloat64m1_t A0i = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
  768. ai += 4*2;
  769. // 2 vector regs to hold A array contents, 4 regs to hold values accumulated over k
  770. // leaving 26 vector registers for temporaries
  771. vfloat64m1_t tmp0r = __riscv_vfmul_vf_f64m1( A0i, B0i, gvl);
  772. vfloat64m1_t tmp0i = __riscv_vfmul_vf_f64m1( A0r, B0i, gvl);
  773. vfloat64m1_t tmp1r = __riscv_vfmul_vf_f64m1( A0i, B1i, gvl);
  774. vfloat64m1_t tmp1i = __riscv_vfmul_vf_f64m1( A0r, B1i, gvl);
  775. tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
  776. tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
  777. tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
  778. tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
  779. vfloat64m1_t ACC0r = tmp0r;
  780. vfloat64m1_t ACC0i = tmp0i;
  781. vfloat64m1_t ACC1r = tmp1r;
  782. vfloat64m1_t ACC1i = tmp1i;
  783. for(BLASLONG k=1; k<pass_K; k++) {
  784. B0r = B[bi+0*2+0];
  785. B0i = B[bi+0*2+1];
  786. B1r = B[bi+1*2+0];
  787. B1i = B[bi+1*2+1];
  788. bi += 2*2;
  789. A0r = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
  790. A0i = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
  791. ai += 4*2;
  792. tmp0r = __riscv_vfmul_vf_f64m1( A0i, B0i, gvl);
  793. tmp0i = __riscv_vfmul_vf_f64m1( A0r, B0i, gvl);
  794. tmp1r = __riscv_vfmul_vf_f64m1( A0i, B1i, gvl);
  795. tmp1i = __riscv_vfmul_vf_f64m1( A0r, B1i, gvl);
  796. tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
  797. tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
  798. tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
  799. tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
  800. ACC0r = __riscv_vfadd( ACC0r, tmp0r, gvl);
  801. ACC0i = __riscv_vfadd( ACC0i, tmp0i, gvl);
  802. ACC1r = __riscv_vfadd( ACC1r, tmp1r, gvl);
  803. ACC1i = __riscv_vfadd( ACC1i, tmp1i, gvl);
  804. }
  805. BLASLONG ci=n_top*ldc+m_top;
  806. vfloat64m1_t C0r = __riscv_vfmul( ACC0r, alphar, gvl );
  807. vfloat64m1_t C0i = __riscv_vfmul( ACC0i, alphar, gvl );
  808. vfloat64m1_t C1r = __riscv_vfmul( ACC1r, alphar, gvl );
  809. vfloat64m1_t C1i = __riscv_vfmul( ACC1i, alphar, gvl );
  810. C0r = __riscv_vfnmsac( C0r, alphai, ACC0i, gvl );
  811. C0i = __riscv_vfmacc ( C0i, alphai, ACC0r, gvl );
  812. C1r = __riscv_vfnmsac( C1r, alphai, ACC1i, gvl );
  813. C1i = __riscv_vfmacc ( C1i, alphai, ACC1r, gvl );
  814. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C0r, gvl);
  815. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C0i, gvl);
  816. ci += ldc-gvl*0;
  817. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C1r, gvl);
  818. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C1i, gvl);
  819. m_top += 4;
  820. }
  821. if( M & 2 ) {
  822. gvl = __riscv_vsetvl_e64m1(2);
  823. BLASLONG ai=m_top*K*2;
  824. BLASLONG bi=n_top*K*2;
  825. BLASLONG pass_K = K;
  826. #ifdef LEFT
  827. BLASLONG off = offset + m_top;
  828. #else
  829. BLASLONG off = -offset + n_top;
  830. #endif
  831. #ifdef BACKWARDS
  832. ai += off*2*2;
  833. bi += off*2*2;
  834. pass_K -= off;
  835. #else
  836. #ifdef LEFT
  837. pass_K = off + 2;
  838. #else
  839. pass_K = off + 2;
  840. #endif
  841. #endif
  842. double B0r = B[bi+0*2+0];
  843. double B0i = B[bi+0*2+1];
  844. double B1r = B[bi+1*2+0];
  845. double B1i = B[bi+1*2+1];
  846. bi += 2*2;
  847. vfloat64m1_t A0r = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
  848. vfloat64m1_t A0i = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
  849. ai += 2*2;
  850. // 2 vector regs to hold A array contents, 4 regs to hold values accumulated over k
  851. // leaving 26 vector registers for temporaries
  852. vfloat64m1_t tmp0r = __riscv_vfmul_vf_f64m1( A0i, B0i, gvl);
  853. vfloat64m1_t tmp0i = __riscv_vfmul_vf_f64m1( A0r, B0i, gvl);
  854. vfloat64m1_t tmp1r = __riscv_vfmul_vf_f64m1( A0i, B1i, gvl);
  855. vfloat64m1_t tmp1i = __riscv_vfmul_vf_f64m1( A0r, B1i, gvl);
  856. tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
  857. tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
  858. tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
  859. tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
  860. vfloat64m1_t ACC0r = tmp0r;
  861. vfloat64m1_t ACC0i = tmp0i;
  862. vfloat64m1_t ACC1r = tmp1r;
  863. vfloat64m1_t ACC1i = tmp1i;
  864. for(BLASLONG k=1; k<pass_K; k++) {
  865. B0r = B[bi+0*2+0];
  866. B0i = B[bi+0*2+1];
  867. B1r = B[bi+1*2+0];
  868. B1i = B[bi+1*2+1];
  869. bi += 2*2;
  870. A0r = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
  871. A0i = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
  872. ai += 2*2;
  873. tmp0r = __riscv_vfmul_vf_f64m1( A0i, B0i, gvl);
  874. tmp0i = __riscv_vfmul_vf_f64m1( A0r, B0i, gvl);
  875. tmp1r = __riscv_vfmul_vf_f64m1( A0i, B1i, gvl);
  876. tmp1i = __riscv_vfmul_vf_f64m1( A0r, B1i, gvl);
  877. tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
  878. tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
  879. tmp1r = VFMACC_RR( tmp1r, B1r, A0r, gvl);
  880. tmp1i = VFMACC_RI( tmp1i, B1r, A0i, gvl);
  881. ACC0r = __riscv_vfadd( ACC0r, tmp0r, gvl);
  882. ACC0i = __riscv_vfadd( ACC0i, tmp0i, gvl);
  883. ACC1r = __riscv_vfadd( ACC1r, tmp1r, gvl);
  884. ACC1i = __riscv_vfadd( ACC1i, tmp1i, gvl);
  885. }
  886. BLASLONG ci=n_top*ldc+m_top;
  887. vfloat64m1_t C0r = __riscv_vfmul( ACC0r, alphar, gvl );
  888. vfloat64m1_t C0i = __riscv_vfmul( ACC0i, alphar, gvl );
  889. vfloat64m1_t C1r = __riscv_vfmul( ACC1r, alphar, gvl );
  890. vfloat64m1_t C1i = __riscv_vfmul( ACC1i, alphar, gvl );
  891. C0r = __riscv_vfnmsac( C0r, alphai, ACC0i, gvl );
  892. C0i = __riscv_vfmacc ( C0i, alphai, ACC0r, gvl );
  893. C1r = __riscv_vfnmsac( C1r, alphai, ACC1i, gvl );
  894. C1i = __riscv_vfmacc ( C1i, alphai, ACC1r, gvl );
  895. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C0r, gvl);
  896. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C0i, gvl);
  897. ci += ldc-gvl*0;
  898. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C1r, gvl);
  899. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C1i, gvl);
  900. m_top += 2;
  901. }
  902. if( M & 1 ) {
  903. double result0 = 0;
  904. double result1 = 0;
  905. double result2 = 0;
  906. double result3 = 0;
  907. BLASLONG ai=m_top*K*2;
  908. BLASLONG bi=n_top*K*2;
  909. BLASLONG pass_K = K;
  910. #ifdef LEFT
  911. BLASLONG off = offset + m_top;
  912. #else
  913. BLASLONG off = -offset + n_top;
  914. #endif
  915. #ifdef BACKWARDS
  916. ai += off*1*2;
  917. bi += off*2*2;
  918. pass_K -= off;
  919. #else
  920. #ifdef LEFT
  921. pass_K = off + 1;
  922. #else
  923. pass_K = off + 2;
  924. #endif
  925. #endif
  926. for(BLASLONG k=0; k<pass_K; k++) {
  927. result0+=S0*A[ai+0+0]*B[bi+0+0] + S1*A[ai+0+1]*B[bi+0+1];
  928. result1+=S2*A[ai+0+1]*B[bi+0+0] + S3*A[ai+0+0]*B[bi+0+1];
  929. result2+=S0*A[ai+0+0]*B[bi+2+0] + S1*A[ai+0+1]*B[bi+2+1];
  930. result3+=S2*A[ai+0+1]*B[bi+2+0] + S3*A[ai+0+0]*B[bi+2+1];
  931. ai+=1*2;
  932. bi+=2*2;
  933. }
  934. BLASLONG ci=n_top*ldc+m_top;
  935. double Cr, Ci;
  936. Cr = result0*alphar;
  937. Ci = result1*alphar;
  938. Cr -= result1*alphai;
  939. Ci += result0*alphai;
  940. C[(ci+0*ldc+0)*2+0] = Cr;
  941. C[(ci+0*ldc+0)*2+1] = Ci;
  942. Cr = result2*alphar;
  943. Ci = result3*alphar;
  944. Cr -= result3*alphai;
  945. Ci += result2*alphai;
  946. C[(ci+1*ldc+0)*2+0] = Cr;
  947. C[(ci+1*ldc+0)*2+1] = Ci;
  948. m_top+=1;
  949. }
  950. n_top += 2;
  951. }
  952. // -- tails for N=1
  953. if( N & 1 ) {
  954. gvl = __riscv_vsetvl_e64m1(4);
  955. m_top = 0;
  956. for (BLASLONG i=0; i<M/8; i+=1) {
  957. BLASLONG ai=m_top*K*2;
  958. BLASLONG bi=n_top*K*2;
  959. BLASLONG pass_K = K;
  960. #ifdef LEFT
  961. BLASLONG off = offset + m_top;
  962. #else
  963. BLASLONG off = -offset + n_top;
  964. #endif
  965. #ifdef BACKWARDS
  966. ai += off*8*2;
  967. bi += off*1*2;
  968. pass_K -= off;
  969. #else
  970. #ifdef LEFT
  971. pass_K = off + 8;
  972. #else
  973. pass_K = off + 1;
  974. #endif
  975. #endif
  976. double B0r = B[bi+0*2+0];
  977. double B0i = B[bi+0*2+1];
  978. bi += 1*2;
  979. vfloat64m1_t A0r = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
  980. vfloat64m1_t A0i = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
  981. vfloat64m1_t A1r = __riscv_vlse64_v_f64m1( &A[ai+1*gvl*2], sizeof(FLOAT)*2, gvl );
  982. vfloat64m1_t A1i = __riscv_vlse64_v_f64m1( &A[ai+1*gvl*2+1], sizeof(FLOAT)*2, gvl );
  983. ai += 8*2;
  984. // 4 vector regs to hold A array contents, 4 regs to hold values accumulated over k
  985. // leaving 24 vector registers for temporaries
  986. vfloat64m1_t tmp0r = __riscv_vfmul_vf_f64m1( A0i, B0i, gvl);
  987. vfloat64m1_t tmp0i = __riscv_vfmul_vf_f64m1( A0r, B0i, gvl);
  988. vfloat64m1_t tmp1r = __riscv_vfmul_vf_f64m1( A1i, B0i, gvl);
  989. vfloat64m1_t tmp1i = __riscv_vfmul_vf_f64m1( A1r, B0i, gvl);
  990. tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
  991. tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
  992. tmp1r = VFMACC_RR( tmp1r, B0r, A1r, gvl);
  993. tmp1i = VFMACC_RI( tmp1i, B0r, A1i, gvl);
  994. vfloat64m1_t ACC0r = tmp0r;
  995. vfloat64m1_t ACC0i = tmp0i;
  996. vfloat64m1_t ACC1r = tmp1r;
  997. vfloat64m1_t ACC1i = tmp1i;
  998. for(BLASLONG k=1; k<pass_K; k++) {
  999. B0r = B[bi+0*2+0];
  1000. B0i = B[bi+0*2+1];
  1001. bi += 1*2;
  1002. A0r = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
  1003. A0i = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
  1004. A1r = __riscv_vlse64_v_f64m1( &A[ai+1*gvl*2], sizeof(FLOAT)*2, gvl );
  1005. A1i = __riscv_vlse64_v_f64m1( &A[ai+1*gvl*2+1], sizeof(FLOAT)*2, gvl );
  1006. ai += 8*2;
  1007. tmp0r = __riscv_vfmul_vf_f64m1( A0i, B0i, gvl);
  1008. tmp0i = __riscv_vfmul_vf_f64m1( A0r, B0i, gvl);
  1009. tmp1r = __riscv_vfmul_vf_f64m1( A1i, B0i, gvl);
  1010. tmp1i = __riscv_vfmul_vf_f64m1( A1r, B0i, gvl);
  1011. tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
  1012. tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
  1013. tmp1r = VFMACC_RR( tmp1r, B0r, A1r, gvl);
  1014. tmp1i = VFMACC_RI( tmp1i, B0r, A1i, gvl);
  1015. ACC0r = __riscv_vfadd( ACC0r, tmp0r, gvl);
  1016. ACC0i = __riscv_vfadd( ACC0i, tmp0i, gvl);
  1017. ACC1r = __riscv_vfadd( ACC1r, tmp1r, gvl);
  1018. ACC1i = __riscv_vfadd( ACC1i, tmp1i, gvl);
  1019. }
  1020. BLASLONG ci=n_top*ldc+m_top;
  1021. vfloat64m1_t C0r = __riscv_vfmul( ACC0r, alphar, gvl );
  1022. vfloat64m1_t C0i = __riscv_vfmul( ACC0i, alphar, gvl );
  1023. vfloat64m1_t C1r = __riscv_vfmul( ACC1r, alphar, gvl );
  1024. vfloat64m1_t C1i = __riscv_vfmul( ACC1i, alphar, gvl );
  1025. C0r = __riscv_vfnmsac( C0r, alphai, ACC0i, gvl );
  1026. C0i = __riscv_vfmacc ( C0i, alphai, ACC0r, gvl );
  1027. C1r = __riscv_vfnmsac( C1r, alphai, ACC1i, gvl );
  1028. C1i = __riscv_vfmacc ( C1i, alphai, ACC1r, gvl );
  1029. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C0r, gvl);
  1030. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C0i, gvl);
  1031. ci += gvl;
  1032. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C1r, gvl);
  1033. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C1i, gvl);
  1034. m_top += 8;
  1035. }
  1036. if( M & 4 ) {
  1037. gvl = __riscv_vsetvl_e64m1(4);
  1038. BLASLONG ai=m_top*K*2;
  1039. BLASLONG bi=n_top*K*2;
  1040. BLASLONG pass_K = K;
  1041. #ifdef LEFT
  1042. BLASLONG off = offset + m_top;
  1043. #else
  1044. BLASLONG off = -offset + n_top;
  1045. #endif
  1046. #ifdef BACKWARDS
  1047. ai += off*4*2;
  1048. bi += off*1*2;
  1049. pass_K -= off;
  1050. #else
  1051. #ifdef LEFT
  1052. pass_K = off + 4;
  1053. #else
  1054. pass_K = off + 1;
  1055. #endif
  1056. #endif
  1057. double B0r = B[bi+0*2+0];
  1058. double B0i = B[bi+0*2+1];
  1059. bi += 1*2;
  1060. vfloat64m1_t A0r = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
  1061. vfloat64m1_t A0i = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
  1062. ai += 4*2;
  1063. // 2 vector regs to hold A array contents, 2 regs to hold values accumulated over k
  1064. // leaving 28 vector registers for temporaries
  1065. vfloat64m1_t tmp0r = __riscv_vfmul_vf_f64m1( A0i, B0i, gvl);
  1066. vfloat64m1_t tmp0i = __riscv_vfmul_vf_f64m1( A0r, B0i, gvl);
  1067. tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
  1068. tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
  1069. vfloat64m1_t ACC0r = tmp0r;
  1070. vfloat64m1_t ACC0i = tmp0i;
  1071. for(BLASLONG k=1; k<pass_K; k++) {
  1072. B0r = B[bi+0*2+0];
  1073. B0i = B[bi+0*2+1];
  1074. bi += 1*2;
  1075. A0r = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
  1076. A0i = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
  1077. ai += 4*2;
  1078. tmp0r = __riscv_vfmul_vf_f64m1( A0i, B0i, gvl);
  1079. tmp0i = __riscv_vfmul_vf_f64m1( A0r, B0i, gvl);
  1080. tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
  1081. tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
  1082. ACC0r = __riscv_vfadd( ACC0r, tmp0r, gvl);
  1083. ACC0i = __riscv_vfadd( ACC0i, tmp0i, gvl);
  1084. }
  1085. BLASLONG ci=n_top*ldc+m_top;
  1086. vfloat64m1_t C0r = __riscv_vfmul( ACC0r, alphar, gvl );
  1087. vfloat64m1_t C0i = __riscv_vfmul( ACC0i, alphar, gvl );
  1088. C0r = __riscv_vfnmsac( C0r, alphai, ACC0i, gvl );
  1089. C0i = __riscv_vfmacc ( C0i, alphai, ACC0r, gvl );
  1090. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C0r, gvl);
  1091. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C0i, gvl);
  1092. m_top += 4;
  1093. }
  1094. if( M & 2 ) {
  1095. gvl = __riscv_vsetvl_e64m1(2);
  1096. BLASLONG ai=m_top*K*2;
  1097. BLASLONG bi=n_top*K*2;
  1098. BLASLONG pass_K = K;
  1099. #ifdef LEFT
  1100. BLASLONG off = offset + m_top;
  1101. #else
  1102. BLASLONG off = -offset + n_top;
  1103. #endif
  1104. #ifdef BACKWARDS
  1105. ai += off*2*2;
  1106. bi += off*1*2;
  1107. pass_K -= off;
  1108. #else
  1109. #ifdef LEFT
  1110. pass_K = off + 2;
  1111. #else
  1112. pass_K = off + 1;
  1113. #endif
  1114. #endif
  1115. double B0r = B[bi+0*2+0];
  1116. double B0i = B[bi+0*2+1];
  1117. bi += 1*2;
  1118. vfloat64m1_t A0r = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
  1119. vfloat64m1_t A0i = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
  1120. ai += 2*2;
  1121. // 2 vector regs to hold A array contents, 2 regs to hold values accumulated over k
  1122. // leaving 28 vector registers for temporaries
  1123. vfloat64m1_t tmp0r = __riscv_vfmul_vf_f64m1( A0i, B0i, gvl);
  1124. vfloat64m1_t tmp0i = __riscv_vfmul_vf_f64m1( A0r, B0i, gvl);
  1125. tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
  1126. tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
  1127. vfloat64m1_t ACC0r = tmp0r;
  1128. vfloat64m1_t ACC0i = tmp0i;
  1129. for(BLASLONG k=1; k<pass_K; k++) {
  1130. B0r = B[bi+0*2+0];
  1131. B0i = B[bi+0*2+1];
  1132. bi += 1*2;
  1133. A0r = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2], sizeof(FLOAT)*2, gvl );
  1134. A0i = __riscv_vlse64_v_f64m1( &A[ai+0*gvl*2+1], sizeof(FLOAT)*2, gvl );
  1135. ai += 2*2;
  1136. tmp0r = __riscv_vfmul_vf_f64m1( A0i, B0i, gvl);
  1137. tmp0i = __riscv_vfmul_vf_f64m1( A0r, B0i, gvl);
  1138. tmp0r = VFMACC_RR( tmp0r, B0r, A0r, gvl);
  1139. tmp0i = VFMACC_RI( tmp0i, B0r, A0i, gvl);
  1140. ACC0r = __riscv_vfadd( ACC0r, tmp0r, gvl);
  1141. ACC0i = __riscv_vfadd( ACC0i, tmp0i, gvl);
  1142. }
  1143. BLASLONG ci=n_top*ldc+m_top;
  1144. vfloat64m1_t C0r = __riscv_vfmul( ACC0r, alphar, gvl );
  1145. vfloat64m1_t C0i = __riscv_vfmul( ACC0i, alphar, gvl );
  1146. C0r = __riscv_vfnmsac( C0r, alphai, ACC0i, gvl );
  1147. C0i = __riscv_vfmacc ( C0i, alphai, ACC0r, gvl );
  1148. __riscv_vsse64_v_f64m1( &C[ci*2+0], sizeof(FLOAT)*2, C0r, gvl);
  1149. __riscv_vsse64_v_f64m1( &C[ci*2+1], sizeof(FLOAT)*2, C0i, gvl);
  1150. m_top += 2;
  1151. }
  1152. if( M & 1 ) {
  1153. double result0 = 0;
  1154. double result1 = 0;
  1155. BLASLONG ai=m_top*K*2;
  1156. BLASLONG bi=n_top*K*2;
  1157. BLASLONG pass_K = K;
  1158. #ifdef LEFT
  1159. BLASLONG off = offset + m_top;
  1160. #else
  1161. BLASLONG off = -offset + n_top;
  1162. #endif
  1163. #ifdef BACKWARDS
  1164. ai += off*1*2;
  1165. bi += off*1*2;
  1166. pass_K -= off;
  1167. #else
  1168. #ifdef LEFT
  1169. pass_K = off + 1;
  1170. #else
  1171. pass_K = off + 1;
  1172. #endif
  1173. #endif
  1174. for(BLASLONG k=0; k<pass_K; k++) {
  1175. result0+=S0*A[ai+0+0]*B[bi+0+0] + S1*A[ai+0+1]*B[bi+0+1];
  1176. result1+=S2*A[ai+0+1]*B[bi+0+0] + S3*A[ai+0+0]*B[bi+0+1];
  1177. ai+=1*2;
  1178. bi+=1*2;
  1179. }
  1180. BLASLONG ci=n_top*ldc+m_top;
  1181. double Cr, Ci;
  1182. Cr = result0*alphar;
  1183. Ci = result1*alphar;
  1184. Cr -= result1*alphai;
  1185. Ci += result0*alphai;
  1186. C[(ci+0*ldc+0)*2+0] = Cr;
  1187. C[(ci+0*ldc+0)*2+1] = Ci;
  1188. m_top+=1;
  1189. }
  1190. n_top += 1;
  1191. }
  1192. return 0;
  1193. }