You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

trsm_kernel_LT_rvv_v1.c 9.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341
  1. /***************************************************************************
  2. Copyright (c) 2022, The OpenBLAS Project
  3. All rights reserved.
  4. Redistribution and use in source and binary forms, with or without
  5. modification, are permitted provided that the following conditions are
  6. met:
  7. 1. Redistributions of source code must retain the above copyright
  8. notice, this list of conditions and the following disclaimer.
  9. 2. Redistributions in binary form must reproduce the above copyright
  10. notice, this list of conditions and the following disclaimer in
  11. the documentation and/or other materials provided with the
  12. distribution.
  13. 3. Neither the name of the OpenBLAS project nor the names of
  14. its contributors may be used to endorse or promote products
  15. derived from this software without specific prior written permission.
  16. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  19. ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
  20. LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  21. DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  22. SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  23. CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  24. OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  25. USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. *****************************************************************************/
  27. #include "common.h"
  28. #if !defined(DOUBLE)
  29. #define VSETVL(n) __riscv_vsetvl_e32m2(n)
  30. #define VSETVL_MAX __riscv_vsetvlmax_e32m2()
  31. #define FLOAT_V_T vfloat32m2_t
  32. #define FLOAT_VX2_T vfloat32m2x2_t
  33. #define VGET_VX2 __riscv_vget_v_f32m2x2_f32m2
  34. #define VSET_VX2 __riscv_vset_v_f32m2_f32m2x2
  35. #define VLSEV_FLOAT __riscv_vlse32_v_f32m2
  36. #define VSSEV_FLOAT __riscv_vsse32_v_f32m2
  37. #define VSEV_FLOAT __riscv_vse32_v_f32m2
  38. #define VSSEG2_FLOAT __riscv_vsseg2e32_v_f32m2x2
  39. #define VLSSEG2_FLOAT __riscv_vlsseg2e32_v_f32m2x2
  40. #define VSSSEG2_FLOAT __riscv_vssseg2e32_v_f32m2x2
  41. #define VFMACCVF_FLOAT __riscv_vfmacc_vf_f32m2
  42. #define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f32m2
  43. #define VFMULVF_FLOAT __riscv_vfmul_vf_f32m2
  44. #else
  45. #define VSETVL(n) __riscv_vsetvl_e64m2(n)
  46. #define VSETVL_MAX __riscv_vsetvlmax_e64m2()
  47. #define FLOAT_V_T vfloat64m2_t
  48. #define FLOAT_VX2_T vfloat64m2x2_t
  49. #define VGET_VX2 __riscv_vget_v_f64m2x2_f64m2
  50. #define VSET_VX2 __riscv_vset_v_f64m2_f64m2x2
  51. #define VLSEV_FLOAT __riscv_vlse64_v_f64m2
  52. #define VSSEV_FLOAT __riscv_vsse64_v_f64m2
  53. #define VSEV_FLOAT __riscv_vse64_v_f64m2
  54. #define VSSEG2_FLOAT __riscv_vsseg2e64_v_f64m2x2
  55. #define VLSSEG2_FLOAT __riscv_vlsseg2e64_v_f64m2x2
  56. #define VSSSEG2_FLOAT __riscv_vssseg2e64_v_f64m2x2
  57. #define VFMVVF_FLOAT __riscv_vfmv_v_f_f64m2
  58. #define VFMACCVF_FLOAT __riscv_vfmacc_vf_f64m2
  59. #define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f64m2
  60. #define VFMULVF_FLOAT __riscv_vfmul_vf_f64m2
  61. #endif
  62. static FLOAT dm1 = -1.;
  63. #ifdef CONJ
  64. #define GEMM_KERNEL GEMM_KERNEL_L
  65. #else
  66. #define GEMM_KERNEL GEMM_KERNEL_N
  67. #endif
  68. #if GEMM_DEFAULT_UNROLL_N == 1
  69. #define GEMM_UNROLL_N_SHIFT 0
  70. #endif
  71. #if GEMM_DEFAULT_UNROLL_N == 2
  72. #define GEMM_UNROLL_N_SHIFT 1
  73. #endif
  74. #if GEMM_DEFAULT_UNROLL_N == 4
  75. #define GEMM_UNROLL_N_SHIFT 2
  76. #endif
  77. #if GEMM_DEFAULT_UNROLL_N == 8
  78. #define GEMM_UNROLL_N_SHIFT 3
  79. #endif
  80. #if GEMM_DEFAULT_UNROLL_N == 16
  81. #define GEMM_UNROLL_N_SHIFT 4
  82. #endif
  83. // Optimizes the implementation in ../arm64/trsm_kernel_LT_sve.c
  84. #ifndef COMPLEX
  85. static inline void solve(BLASLONG m, BLASLONG n, FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc) {
  86. FLOAT aa;
  87. FLOAT* pc;
  88. int i, j, k;
  89. BLASLONG stride_ldc = sizeof(FLOAT) * ldc;
  90. FLOAT_V_T vb, vc;
  91. size_t vl;
  92. for (i = 0; i < m; i++) {
  93. aa = *(a + i);
  94. pc = c;
  95. for (j = n; j > 0; j -= vl) {
  96. vl = VSETVL(j);
  97. vb = VLSEV_FLOAT(pc + i, stride_ldc, vl);
  98. vb = VFMULVF_FLOAT(vb, aa, vl);
  99. VSEV_FLOAT(b, vb, vl);
  100. VSSEV_FLOAT(pc + i, stride_ldc, vb, vl);
  101. b += vl;
  102. for (k = i + 1; k < m; k++) {
  103. vc = VLSEV_FLOAT(pc + k, stride_ldc, vl);
  104. vc = VFNMSACVF_FLOAT(vc, *(a + k), vb, vl);
  105. VSSEV_FLOAT(pc + k, stride_ldc, vc, vl);
  106. }
  107. pc += vl * ldc;
  108. }
  109. a += m;
  110. }
  111. }
  112. #else
  113. static inline void solve(BLASLONG m, BLASLONG n, FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc) {
  114. FLOAT aa1, aa2;
  115. FLOAT *pc;
  116. int i, j, k;
  117. BLASLONG stride_ldc = sizeof(FLOAT) * ldc * 2;
  118. FLOAT_VX2_T vbx2, vsx2, vcx2;
  119. FLOAT_V_T vb1, vb2, vc1, vc2, vs1, vs2;
  120. size_t vl;
  121. ldc *= 2;
  122. for (i = 0; i < m; i++) {
  123. aa1 = *(a + i * 2 + 0);
  124. aa2 = *(a + i * 2 + 1);
  125. pc = c;
  126. for (j = n; j > 0; j -= vl) {
  127. vl = VSETVL(j);
  128. vbx2 = VLSSEG2_FLOAT(pc + i * 2, stride_ldc, vl);
  129. vb1 = VGET_VX2(vbx2, 0);
  130. vb2 = VGET_VX2(vbx2, 1);
  131. #ifndef CONJ
  132. vs1 = VFMULVF_FLOAT(vb1, aa1, vl);
  133. vs1 = VFNMSACVF_FLOAT(vs1, aa2, vb2, vl);
  134. vs2 = VFMULVF_FLOAT(vb2, aa1, vl);
  135. vs2 = VFMACCVF_FLOAT(vs2, aa2, vb1, vl);
  136. #else
  137. vs1 = VFMULVF_FLOAT(vb1, aa1, vl);
  138. vs1 = VFMACCVF_FLOAT(vs1, aa2, vb2, vl);
  139. vs2 = VFMULVF_FLOAT(vb2, aa1, vl);
  140. vs2 = VFNMSACVF_FLOAT(vs2, aa2, vb1, vl);
  141. #endif
  142. vsx2 = VSET_VX2(vsx2, 0, vs1);
  143. vsx2 = VSET_VX2(vsx2, 1, vs2);
  144. VSSEG2_FLOAT(b, vsx2, vl);
  145. VSSSEG2_FLOAT(pc + i * 2, stride_ldc, vsx2, vl);
  146. b += vl * 2;
  147. for (k = i + 1; k < m; k++) {
  148. vcx2 = VLSSEG2_FLOAT(pc + k * 2, stride_ldc, vl);
  149. vc1 = VGET_VX2(vcx2, 0);
  150. vc2 = VGET_VX2(vcx2, 1);
  151. #ifndef CONJ
  152. vc1 = VFMACCVF_FLOAT(vc1, *(a + k * 2 + 1), vs2, vl);
  153. vc1 = VFNMSACVF_FLOAT(vc1, *(a + k * 2 + 0), vs1, vl);
  154. vc2 = VFNMSACVF_FLOAT(vc2, *(a + k * 2 + 1), vs1, vl);
  155. vc2 = VFNMSACVF_FLOAT(vc2, *(a + k * 2 + 0), vs2, vl);
  156. #else
  157. vc1 = VFNMSACVF_FLOAT(vc1, *(a + k * 2 + 1), vs2, vl);
  158. vc1 = VFNMSACVF_FLOAT(vc1, *(a + k * 2 + 0), vs1, vl);
  159. vc2 = VFMACCVF_FLOAT(vc2, *(a + k * 2 + 1), vs1, vl);
  160. vc2 = VFNMSACVF_FLOAT(vc2, *(a + k * 2 + 0), vs2, vl);
  161. #endif
  162. vcx2 = VSET_VX2(vcx2, 0, vc1);
  163. vcx2 = VSET_VX2(vcx2, 1, vc2);
  164. VSSSEG2_FLOAT(pc + k * 2, stride_ldc, vcx2, vl);
  165. }
  166. pc += vl * ldc * 2;
  167. }
  168. a += m * 2;
  169. }
  170. }
  171. #endif
  172. int CNAME(BLASLONG m, BLASLONG n, BLASLONG k, FLOAT dummy1,
  173. #ifdef COMPLEX
  174. FLOAT dummy2,
  175. #endif
  176. FLOAT *a, FLOAT *b, FLOAT *c, BLASLONG ldc, BLASLONG offset){
  177. FLOAT *aa, *cc;
  178. BLASLONG kk;
  179. BLASLONG i, j;
  180. size_t vl = VSETVL_MAX;
  181. //fprintf(stderr, "%s , %s, m = %4ld n = %4ld k = %4ld offset = %4ld\n", __FILE__, __FUNCTION__, m, n, k, offset); // Debug
  182. j = (n >> GEMM_UNROLL_N_SHIFT);
  183. while (j > 0) {
  184. kk = offset;
  185. aa = a;
  186. cc = c;
  187. i = vl;
  188. while (i <= m) {
  189. if (kk > 0) {
  190. GEMM_KERNEL(vl, GEMM_UNROLL_N, kk, dm1,
  191. #ifdef COMPLEX
  192. ZERO,
  193. #endif
  194. aa, b, cc, ldc);
  195. }
  196. solve(vl, GEMM_UNROLL_N,
  197. aa + kk * vl * COMPSIZE,
  198. b + kk * GEMM_UNROLL_N * COMPSIZE,
  199. cc, ldc);
  200. aa += vl * k * COMPSIZE;
  201. cc += vl * COMPSIZE;
  202. kk += vl;
  203. i += vl;
  204. }
  205. i = m % vl;
  206. if (i) {
  207. if (kk > 0) {
  208. GEMM_KERNEL(i, GEMM_UNROLL_N, kk, dm1,
  209. #ifdef COMPLEX
  210. ZERO,
  211. #endif
  212. aa, b, cc, ldc);
  213. }
  214. solve(i, GEMM_UNROLL_N,
  215. aa + kk * i * COMPSIZE,
  216. b + kk * GEMM_UNROLL_N * COMPSIZE,
  217. cc, ldc);
  218. aa += i * k * COMPSIZE;
  219. cc += i * COMPSIZE;
  220. kk += i;
  221. }
  222. b += GEMM_UNROLL_N * k * COMPSIZE;
  223. c += GEMM_UNROLL_N * ldc * COMPSIZE;
  224. j --;
  225. }
  226. if (n & (GEMM_UNROLL_N - 1)) {
  227. j = (GEMM_UNROLL_N >> 1);
  228. while (j > 0) {
  229. if (n & j) {
  230. kk = offset;
  231. aa = a;
  232. cc = c;
  233. i = vl;
  234. while (i <= m) {
  235. if (kk > 0) {
  236. GEMM_KERNEL(vl, j, kk, dm1,
  237. #ifdef COMPLEX
  238. ZERO,
  239. #endif
  240. aa,
  241. b,
  242. cc,
  243. ldc);
  244. }
  245. solve(vl, j,
  246. aa + kk * vl * COMPSIZE,
  247. b + kk * j * COMPSIZE, cc, ldc);
  248. aa += vl * k * COMPSIZE;
  249. cc += vl * COMPSIZE;
  250. kk += vl;
  251. i += vl;
  252. }
  253. i = m % vl;
  254. if (i) {
  255. if (kk > 0) {
  256. GEMM_KERNEL(i, j, kk, dm1,
  257. #ifdef COMPLEX
  258. ZERO,
  259. #endif
  260. aa,
  261. b,
  262. cc,
  263. ldc);
  264. }
  265. solve(i, j,
  266. aa + kk * i * COMPSIZE,
  267. b + kk * j * COMPSIZE, cc, ldc);
  268. aa += i * k * COMPSIZE;
  269. cc += i * COMPSIZE;
  270. kk += i;
  271. }
  272. b += j * k * COMPSIZE;
  273. c += j * ldc * COMPSIZE;
  274. }
  275. j >>= 1;
  276. }
  277. }
  278. return 0;
  279. }