You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

level3_syrk.c 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #ifndef KERNEL_OPERATION
  39. #ifndef COMPLEX
  40. #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
  41. KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y))
  42. #else
  43. #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
  44. KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y))
  45. #endif
  46. #endif
  47. #ifndef ICOPY_OPERATION
  48. #ifndef TRANS
  49. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  50. #else
  51. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  52. #endif
  53. #endif
  54. #ifndef OCOPY_OPERATION
  55. #ifdef TRANS
  56. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  57. #else
  58. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  59. #endif
  60. #endif
  61. #ifndef M
  62. #define M args -> n
  63. #endif
  64. #ifndef N
  65. #define N args -> n
  66. #endif
  67. #ifndef K
  68. #define K args -> k
  69. #endif
  70. #ifndef A
  71. #define A args -> a
  72. #endif
  73. #ifndef C
  74. #define C args -> c
  75. #endif
  76. #ifndef LDA
  77. #define LDA args -> lda
  78. #endif
  79. #ifndef LDC
  80. #define LDC args -> ldc
  81. #endif
  82. #ifdef TIMING
  83. #define START_RPCC() rpcc_counter = rpcc()
  84. #define STOP_RPCC(COUNTER) COUNTER += rpcc() - rpcc_counter
  85. #else
  86. #define START_RPCC()
  87. #define STOP_RPCC(COUNTER)
  88. #endif
  89. int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG dummy) {
  90. BLASLONG m_from, m_to, n_from, n_to, k, lda, ldc;
  91. FLOAT *a, *c, *alpha, *beta;
  92. BLASLONG ls, is, js;
  93. BLASLONG min_l, min_i, min_j;
  94. BLASLONG jjs, min_jj;
  95. BLASLONG m_start, m_end;
  96. int shared = ((GEMM_UNROLL_M == GEMM_UNROLL_N) && !HAVE_EX_L2);
  97. FLOAT *aa;
  98. #ifdef TIMING
  99. unsigned long long rpcc_counter;
  100. unsigned long long innercost = 0;
  101. unsigned long long outercost = 0;
  102. unsigned long long kernelcost = 0;
  103. double total;
  104. #endif
  105. k = K;
  106. a = (FLOAT *)A;
  107. c = (FLOAT *)C;
  108. lda = LDA;
  109. ldc = LDC;
  110. alpha = (FLOAT *)args -> alpha;
  111. beta = (FLOAT *)args -> beta;
  112. m_from = 0;
  113. m_to = M;
  114. if (range_m) {
  115. m_from = *(((BLASLONG *)range_m) + 0);
  116. m_to = *(((BLASLONG *)range_m) + 1);
  117. }
  118. n_from = 0;
  119. n_to = N;
  120. if (range_n) {
  121. n_from = *(((BLASLONG *)range_n) + 0);
  122. n_to = *(((BLASLONG *)range_n) + 1);
  123. }
  124. if (beta) {
  125. #if !defined(COMPLEX) || defined(HERK)
  126. if (beta[0] != ONE)
  127. #else
  128. if ((beta[0] != ONE) || (beta[1] != ZERO))
  129. #endif
  130. syrk_beta(m_from, m_to, n_from, n_to, beta, c, ldc);
  131. }
  132. if ((k == 0) || (alpha == NULL)) return 0;
  133. if (alpha[0] == ZERO
  134. #if defined(COMPLEX) && !defined(HERK)
  135. && alpha[1] == ZERO
  136. #endif
  137. ) return 0;
  138. #if 0
  139. fprintf(stderr, "m_from : %ld m_to : %ld n_from : %ld n_to : %ld\n",
  140. m_from, m_to, n_from, n_to);
  141. #endif
  142. for(js = n_from; js < n_to; js += GEMM_R){
  143. min_j = n_to - js;
  144. if (min_j > GEMM_R) min_j = GEMM_R;
  145. #ifndef LOWER
  146. m_start = m_from;
  147. m_end = js + min_j;
  148. if (m_end > m_to) m_end = m_to;
  149. #else
  150. m_start = m_from;
  151. m_end = m_to;
  152. if (m_start < js) m_start = js;
  153. #endif
  154. for(ls = 0; ls < k; ls += min_l){
  155. min_l = k - ls;
  156. if (min_l >= GEMM_Q * 2) {
  157. min_l = GEMM_Q;
  158. } else
  159. if (min_l > GEMM_Q) {
  160. min_l = (min_l + 1) / 2;
  161. }
  162. min_i = m_end - m_start;
  163. if (min_i >= GEMM_P * 2) {
  164. min_i = GEMM_P;
  165. } else
  166. if (min_i > GEMM_P) {
  167. min_i = ((min_i / 2 + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  168. }
  169. #ifndef LOWER
  170. if (m_end >= js) {
  171. aa = sb + min_l * MAX(m_start - js, 0) * COMPSIZE;
  172. if (!shared) aa = sa;
  173. for(jjs = MAX(m_start, js); jjs < js + min_j; jjs += min_jj){
  174. min_jj = js + min_j - jjs;
  175. if (min_jj > GEMM_UNROLL_MN) min_jj = GEMM_UNROLL_MN;
  176. if (!shared && (jjs - MAX(m_start, js) < min_i)) {
  177. START_RPCC();
  178. ICOPY_OPERATION(min_l, min_jj, a, lda, ls, jjs, sa + min_l * (jjs - js) * COMPSIZE);
  179. STOP_RPCC(innercost);
  180. }
  181. START_RPCC();
  182. OCOPY_OPERATION(min_l, min_jj, a, lda, ls, jjs, sb + min_l * (jjs - js) * COMPSIZE);
  183. STOP_RPCC(outercost);
  184. START_RPCC();
  185. KERNEL_OPERATION(min_i, min_jj, min_l, alpha, aa, sb + min_l * (jjs - js) * COMPSIZE, c, ldc, MAX(m_start, js), jjs);
  186. STOP_RPCC(kernelcost);
  187. }
  188. for(is = MAX(m_start, js) + min_i; is < m_end; is += min_i){
  189. min_i = m_end - is;
  190. if (min_i >= GEMM_P * 2) {
  191. min_i = GEMM_P;
  192. } else
  193. if (min_i > GEMM_P) {
  194. min_i = ((min_i / 2 + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  195. }
  196. aa = sb + min_l * (is - js) * COMPSIZE;
  197. if (!shared) {
  198. START_RPCC();
  199. ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa);
  200. STOP_RPCC(innercost);
  201. aa = sa;
  202. }
  203. START_RPCC();
  204. KERNEL_OPERATION(min_i, min_j, min_l, alpha, aa, sb, c, ldc, is, js);
  205. STOP_RPCC(kernelcost);
  206. }
  207. }
  208. if (m_start < js) {
  209. if (m_end < js) {
  210. START_RPCC();
  211. ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_start, sa);
  212. STOP_RPCC(innercost);
  213. for(jjs = js; jjs < js + min_j; jjs += GEMM_UNROLL_MN){
  214. min_jj = min_j + js - jjs;
  215. if (min_jj > GEMM_UNROLL_MN) min_jj = GEMM_UNROLL_MN;
  216. START_RPCC();
  217. OCOPY_OPERATION(min_l, min_jj, a, lda, ls, jjs, sb + min_l * (jjs - js) * COMPSIZE);
  218. STOP_RPCC(outercost);
  219. START_RPCC();
  220. KERNEL_OPERATION(min_i, min_jj, min_l, alpha, sa, sb + min_l * (jjs - js) * COMPSIZE, c, ldc, m_start, jjs);
  221. STOP_RPCC(kernelcost);
  222. }
  223. } else {
  224. min_i = 0;
  225. }
  226. for(is = m_start + min_i; is < MIN(m_end, js); is += min_i){
  227. min_i = MIN(m_end, js)- is;
  228. if (min_i >= GEMM_P * 2) {
  229. min_i = GEMM_P;
  230. } else
  231. if (min_i > GEMM_P) {
  232. min_i = ((min_i / 2 + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  233. }
  234. START_RPCC();
  235. ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa);
  236. STOP_RPCC(innercost);
  237. START_RPCC();
  238. KERNEL_OPERATION(min_i, min_j, min_l, alpha, sa, sb, c, ldc, is, js);
  239. STOP_RPCC(kernelcost);
  240. }
  241. }
  242. #else
  243. if (m_start < js + min_j) {
  244. aa = sb + min_l * (m_start - js) * COMPSIZE;
  245. if (!shared) {
  246. START_RPCC();
  247. ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_start, sa);
  248. STOP_RPCC(innercost);
  249. }
  250. START_RPCC();
  251. OCOPY_OPERATION(min_l, (shared? (min_i) : MIN(min_i, min_j + js - m_start)), a, lda, ls, m_start, aa);
  252. STOP_RPCC(outercost);
  253. START_RPCC();
  254. KERNEL_OPERATION(min_i, MIN(min_i, min_j + js - m_start), min_l, alpha, (shared? (aa) : (sa)), aa, c, ldc, m_start, m_start);
  255. STOP_RPCC(kernelcost);
  256. for(jjs = js; jjs < m_start; jjs += GEMM_UNROLL_N){
  257. min_jj = m_start - jjs;
  258. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  259. START_RPCC();
  260. OCOPY_OPERATION(min_l, min_jj, a, lda, ls, jjs, sb + min_l * (jjs - js) * COMPSIZE);
  261. STOP_RPCC(outercost);
  262. START_RPCC();
  263. KERNEL_OPERATION(min_i, min_jj, min_l, alpha, (shared? (aa) : (sa)), sb + min_l * (jjs - js) * COMPSIZE, c, ldc, m_start, jjs);
  264. STOP_RPCC(kernelcost);
  265. }
  266. for(is = m_start + min_i; is < m_end; is += min_i){
  267. min_i = m_end - is;
  268. if (min_i >= GEMM_P * 2) {
  269. min_i = GEMM_P;
  270. } else
  271. if (min_i > GEMM_P) {
  272. min_i = ((min_i / 2 + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  273. }
  274. if (is < js + min_j) {
  275. if (!shared) {
  276. START_RPCC();
  277. ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa);
  278. STOP_RPCC(innercost);
  279. }
  280. aa = sb + min_l * (is - js) * COMPSIZE;
  281. START_RPCC();
  282. OCOPY_OPERATION(min_l, (shared? (min_i) : MIN(min_i, min_j - is + js)), a, lda, ls, is, aa);
  283. STOP_RPCC(outercost);
  284. START_RPCC();
  285. KERNEL_OPERATION(min_i, MIN(min_i, min_j - is + js), min_l, alpha, (shared? (aa) : (sa)), aa, c, ldc, is, is);
  286. STOP_RPCC(kernelcost);
  287. START_RPCC();
  288. KERNEL_OPERATION(min_i, is - js, min_l, alpha, (shared? (aa) : (sa)), sb, c, ldc, is, js);
  289. STOP_RPCC(kernelcost);
  290. } else {
  291. START_RPCC();
  292. ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa);
  293. STOP_RPCC(innercost);
  294. START_RPCC();
  295. KERNEL_OPERATION(min_i, min_j, min_l, alpha, sa, sb, c, ldc, is, js);
  296. STOP_RPCC(kernelcost);
  297. }
  298. }
  299. } else {
  300. START_RPCC();
  301. ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_start, sa);
  302. STOP_RPCC(innercost);
  303. for(jjs = js; jjs < min_j; jjs += GEMM_UNROLL_N){
  304. min_jj = min_j - jjs;
  305. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  306. START_RPCC();
  307. OCOPY_OPERATION(min_l, min_jj, a, lda, ls, jjs, sb + min_l * (jjs - js) * COMPSIZE);
  308. STOP_RPCC(outercost);
  309. START_RPCC();
  310. KERNEL_OPERATION(min_i, min_jj, min_l, alpha, sa, sb + min_l * (jjs - js) * COMPSIZE, c, ldc, m_start, jjs);
  311. STOP_RPCC(kernelcost);
  312. }
  313. for(is = m_start + min_i; is < m_end; is += min_i){
  314. min_i = m_end - is;
  315. if (min_i >= GEMM_P * 2) {
  316. min_i = GEMM_P;
  317. } else
  318. if (min_i > GEMM_P) {
  319. min_i = ((min_i / 2 + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  320. }
  321. START_RPCC();
  322. ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa);
  323. STOP_RPCC(innercost);
  324. START_RPCC();
  325. KERNEL_OPERATION(min_i, min_j, min_l, alpha, sa, sb, c, ldc, is, js);
  326. STOP_RPCC(kernelcost);
  327. }
  328. }
  329. #endif
  330. }
  331. }
  332. #ifdef TIMING
  333. total = (double)outercost + (double)innercost + (double)kernelcost;
  334. printf( "Copy A : %5.2f Copy B: %5.2f Kernel : %5.2f kernel Effi. : %5.2f Total Effi. : %5.2f\n",
  335. innercost / total * 100., outercost / total * 100., kernelcost / total * 100.,
  336. (double)(m_to - m_from) * (double)(n_to - n_from) * (double)k / (double)kernelcost * 100. * (double)COMPSIZE / (double)DNUMOPT,
  337. (double)(m_to - m_from) * (double)(n_to - n_from) * (double)k / total * 100. * (double)COMPSIZE / (double)DNUMOPT);
  338. #endif
  339. return 0;
  340. }