You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clamtsqr.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
  1. *> \brief \b CLAMTSQR
  2. *
  3. * Definition:
  4. * ===========
  5. *
  6. * SUBROUTINE CLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
  7. * $ LDT, C, LDC, WORK, LWORK, INFO )
  8. *
  9. *
  10. * .. Scalar Arguments ..
  11. * CHARACTER SIDE, TRANS
  12. * INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
  13. * ..
  14. * .. Array Arguments ..
  15. * COMPLEX A( LDA, * ), WORK( * ), C(LDC, * ),
  16. * $ T( LDT, * )
  17. *> \par Purpose:
  18. * =============
  19. *>
  20. *> \verbatim
  21. *>
  22. *> CLAMTSQR overwrites the general complex M-by-N matrix C with
  23. *>
  24. *>
  25. *> SIDE = 'L' SIDE = 'R'
  26. *> TRANS = 'N': Q * C C * Q
  27. *> TRANS = 'C': Q**H * C C * Q**H
  28. *> where Q is a complex unitary matrix defined as the product
  29. *> of blocked elementary reflectors computed by tall skinny
  30. *> QR factorization (CLATSQR)
  31. *> \endverbatim
  32. *
  33. * Arguments:
  34. * ==========
  35. *
  36. *> \param[in] SIDE
  37. *> \verbatim
  38. *> SIDE is CHARACTER*1
  39. *> = 'L': apply Q or Q**H from the Left;
  40. *> = 'R': apply Q or Q**H from the Right.
  41. *> \endverbatim
  42. *>
  43. *> \param[in] TRANS
  44. *> \verbatim
  45. *> TRANS is CHARACTER*1
  46. *> = 'N': No transpose, apply Q;
  47. *> = 'C': Conjugate Transpose, apply Q**H.
  48. *> \endverbatim
  49. *>
  50. *> \param[in] M
  51. *> \verbatim
  52. *> M is INTEGER
  53. *> The number of rows of the matrix A. M >=0.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] N
  57. *> \verbatim
  58. *> N is INTEGER
  59. *> The number of columns of the matrix C. N >= 0.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] K
  63. *> \verbatim
  64. *> K is INTEGER
  65. *> The number of elementary reflectors whose product defines
  66. *> the matrix Q. M >= K >= 0;
  67. *>
  68. *> \endverbatim
  69. *>
  70. *> \param[in] MB
  71. *> \verbatim
  72. *> MB is INTEGER
  73. *> The block size to be used in the blocked QR.
  74. *> MB > N. (must be the same as CLATSQR)
  75. *> \endverbatim
  76. *>
  77. *> \param[in] NB
  78. *> \verbatim
  79. *> NB is INTEGER
  80. *> The column block size to be used in the blocked QR.
  81. *> N >= NB >= 1.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] A
  85. *> \verbatim
  86. *> A is COMPLEX array, dimension (LDA,K)
  87. *> The i-th column must contain the vector which defines the
  88. *> blockedelementary reflector H(i), for i = 1,2,...,k, as
  89. *> returned by CLATSQR in the first k columns of
  90. *> its array argument A.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] LDA
  94. *> \verbatim
  95. *> LDA is INTEGER
  96. *> The leading dimension of the array A.
  97. *> If SIDE = 'L', LDA >= max(1,M);
  98. *> if SIDE = 'R', LDA >= max(1,N).
  99. *> \endverbatim
  100. *>
  101. *> \param[in] T
  102. *> \verbatim
  103. *> T is COMPLEX array, dimension
  104. *> ( N * Number of blocks(CEIL(M-K/MB-K)),
  105. *> The blocked upper triangular block reflectors stored in compact form
  106. *> as a sequence of upper triangular blocks. See below
  107. *> for further details.
  108. *> \endverbatim
  109. *>
  110. *> \param[in] LDT
  111. *> \verbatim
  112. *> LDT is INTEGER
  113. *> The leading dimension of the array T. LDT >= NB.
  114. *> \endverbatim
  115. *>
  116. *> \param[in,out] C
  117. *> \verbatim
  118. *> C is COMPLEX array, dimension (LDC,N)
  119. *> On entry, the M-by-N matrix C.
  120. *> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
  121. *> \endverbatim
  122. *>
  123. *> \param[in] LDC
  124. *> \verbatim
  125. *> LDC is INTEGER
  126. *> The leading dimension of the array C. LDC >= max(1,M).
  127. *> \endverbatim
  128. *>
  129. *> \param[out] WORK
  130. *> \verbatim
  131. *> (workspace) COMPLEX array, dimension (MAX(1,LWORK))
  132. *>
  133. *> \endverbatim
  134. *> \param[in] LWORK
  135. *> \verbatim
  136. *> LWORK is INTEGER
  137. *> The dimension of the array WORK.
  138. *>
  139. *> If SIDE = 'L', LWORK >= max(1,N)*NB;
  140. *> if SIDE = 'R', LWORK >= max(1,MB)*NB.
  141. *> If LWORK = -1, then a workspace query is assumed; the routine
  142. *> only calculates the optimal size of the WORK array, returns
  143. *> this value as the first entry of the WORK array, and no error
  144. *> message related to LWORK is issued by XERBLA.
  145. *>
  146. *> \endverbatim
  147. *> \param[out] INFO
  148. *> \verbatim
  149. *> INFO is INTEGER
  150. *> = 0: successful exit
  151. *> < 0: if INFO = -i, the i-th argument had an illegal value
  152. *> \endverbatim
  153. *
  154. * Authors:
  155. * ========
  156. *
  157. *> \author Univ. of Tennessee
  158. *> \author Univ. of California Berkeley
  159. *> \author Univ. of Colorado Denver
  160. *> \author NAG Ltd.
  161. *
  162. *> \par Further Details:
  163. * =====================
  164. *>
  165. *> \verbatim
  166. *> Tall-Skinny QR (TSQR) performs QR by a sequence of unitary transformations,
  167. *> representing Q as a product of other unitary matrices
  168. *> Q = Q(1) * Q(2) * . . . * Q(k)
  169. *> where each Q(i) zeros out subdiagonal entries of a block of MB rows of A:
  170. *> Q(1) zeros out the subdiagonal entries of rows 1:MB of A
  171. *> Q(2) zeros out the bottom MB-N rows of rows [1:N,MB+1:2*MB-N] of A
  172. *> Q(3) zeros out the bottom MB-N rows of rows [1:N,2*MB-N+1:3*MB-2*N] of A
  173. *> . . .
  174. *>
  175. *> Q(1) is computed by GEQRT, which represents Q(1) by Householder vectors
  176. *> stored under the diagonal of rows 1:MB of A, and by upper triangular
  177. *> block reflectors, stored in array T(1:LDT,1:N).
  178. *> For more information see Further Details in GEQRT.
  179. *>
  180. *> Q(i) for i>1 is computed by TPQRT, which represents Q(i) by Householder vectors
  181. *> stored in rows [(i-1)*(MB-N)+N+1:i*(MB-N)+N] of A, and by upper triangular
  182. *> block reflectors, stored in array T(1:LDT,(i-1)*N+1:i*N).
  183. *> The last Q(k) may use fewer rows.
  184. *> For more information see Further Details in TPQRT.
  185. *>
  186. *> For more details of the overall algorithm, see the description of
  187. *> Sequential TSQR in Section 2.2 of [1].
  188. *>
  189. *> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
  190. *> J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
  191. *> SIAM J. Sci. Comput, vol. 34, no. 1, 2012
  192. *> \endverbatim
  193. *>
  194. *> \ingroup lamtsqr
  195. *>
  196. * =====================================================================
  197. SUBROUTINE CLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
  198. $ LDT, C, LDC, WORK, LWORK, INFO )
  199. *
  200. * -- LAPACK computational routine --
  201. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  202. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  203. *
  204. * .. Scalar Arguments ..
  205. CHARACTER SIDE, TRANS
  206. INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
  207. * ..
  208. * .. Array Arguments ..
  209. COMPLEX A( LDA, * ), WORK( * ), C(LDC, * ),
  210. $ T( LDT, * )
  211. * ..
  212. *
  213. * =====================================================================
  214. *
  215. * ..
  216. * .. Local Scalars ..
  217. LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY
  218. INTEGER I, II, KK, LW, CTR, Q
  219. * ..
  220. * .. External Functions ..
  221. LOGICAL LSAME
  222. REAL SROUNDUP_LWORK
  223. EXTERNAL LSAME, SROUNDUP_LWORK
  224. * .. External Subroutines ..
  225. EXTERNAL CGEMQRT, CTPMQRT, XERBLA
  226. * ..
  227. * .. Executable Statements ..
  228. *
  229. * Test the input arguments
  230. *
  231. LQUERY = LWORK.LT.0
  232. NOTRAN = LSAME( TRANS, 'N' )
  233. TRAN = LSAME( TRANS, 'C' )
  234. LEFT = LSAME( SIDE, 'L' )
  235. RIGHT = LSAME( SIDE, 'R' )
  236. IF (LEFT) THEN
  237. LW = N * NB
  238. Q = M
  239. ELSE
  240. LW = M * NB
  241. Q = N
  242. END IF
  243. *
  244. INFO = 0
  245. IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
  246. INFO = -1
  247. ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
  248. INFO = -2
  249. ELSE IF( M.LT.K ) THEN
  250. INFO = -3
  251. ELSE IF( N.LT.0 ) THEN
  252. INFO = -4
  253. ELSE IF( K.LT.0 ) THEN
  254. INFO = -5
  255. ELSE IF( K.LT.NB .OR. NB.LT.1 ) THEN
  256. INFO = -7
  257. ELSE IF( LDA.LT.MAX( 1, Q ) ) THEN
  258. INFO = -9
  259. ELSE IF( LDT.LT.MAX( 1, NB) ) THEN
  260. INFO = -11
  261. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  262. INFO = -13
  263. ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN
  264. INFO = -15
  265. END IF
  266. *
  267. * Determine the block size if it is tall skinny or short and wide
  268. *
  269. IF( INFO.EQ.0) THEN
  270. WORK(1) = SROUNDUP_LWORK(LW)
  271. END IF
  272. *
  273. IF( INFO.NE.0 ) THEN
  274. CALL XERBLA( 'CLAMTSQR', -INFO )
  275. RETURN
  276. ELSE IF (LQUERY) THEN
  277. RETURN
  278. END IF
  279. *
  280. * Quick return if possible
  281. *
  282. IF( MIN(M,N,K).EQ.0 ) THEN
  283. RETURN
  284. END IF
  285. *
  286. IF((MB.LE.K).OR.(MB.GE.MAX(M,N,K))) THEN
  287. CALL CGEMQRT( SIDE, TRANS, M, N, K, NB, A, LDA,
  288. $ T, LDT, C, LDC, WORK, INFO)
  289. RETURN
  290. END IF
  291. *
  292. IF(LEFT.AND.NOTRAN) THEN
  293. *
  294. * Multiply Q to the last block of C
  295. *
  296. KK = MOD((M-K),(MB-K))
  297. CTR = (M-K)/(MB-K)
  298. IF (KK.GT.0) THEN
  299. II=M-KK+1
  300. CALL CTPMQRT('L','N',KK , N, K, 0, NB, A(II,1), LDA,
  301. $ T(1, CTR*K+1),LDT , C(1,1), LDC,
  302. $ C(II,1), LDC, WORK, INFO )
  303. ELSE
  304. II=M+1
  305. END IF
  306. *
  307. DO I=II-(MB-K),MB+1,-(MB-K)
  308. *
  309. * Multiply Q to the current block of C (I:I+MB,1:N)
  310. *
  311. CTR = CTR - 1
  312. CALL CTPMQRT('L','N',MB-K , N, K, 0,NB, A(I,1), LDA,
  313. $ T(1,CTR*K+1),LDT, C(1,1), LDC,
  314. $ C(I,1), LDC, WORK, INFO )
  315. END DO
  316. *
  317. * Multiply Q to the first block of C (1:MB,1:N)
  318. *
  319. CALL CGEMQRT('L','N',MB , N, K, NB, A(1,1), LDA, T
  320. $ ,LDT ,C(1,1), LDC, WORK, INFO )
  321. *
  322. ELSE IF (LEFT.AND.TRAN) THEN
  323. *
  324. * Multiply Q to the first block of C
  325. *
  326. KK = MOD((M-K),(MB-K))
  327. II=M-KK+1
  328. CTR = 1
  329. CALL CGEMQRT('L','C',MB , N, K, NB, A(1,1), LDA, T
  330. $ ,LDT ,C(1,1), LDC, WORK, INFO )
  331. *
  332. DO I=MB+1,II-MB+K,(MB-K)
  333. *
  334. * Multiply Q to the current block of C (I:I+MB,1:N)
  335. *
  336. CALL CTPMQRT('L','C',MB-K , N, K, 0,NB, A(I,1), LDA,
  337. $ T(1, CTR*K+1),LDT, C(1,1), LDC,
  338. $ C(I,1), LDC, WORK, INFO )
  339. CTR = CTR + 1
  340. *
  341. END DO
  342. IF(II.LE.M) THEN
  343. *
  344. * Multiply Q to the last block of C
  345. *
  346. CALL CTPMQRT('L','C',KK , N, K, 0,NB, A(II,1), LDA,
  347. $ T(1,CTR*K+1), LDT, C(1,1), LDC,
  348. $ C(II,1), LDC, WORK, INFO )
  349. *
  350. END IF
  351. *
  352. ELSE IF(RIGHT.AND.TRAN) THEN
  353. *
  354. * Multiply Q to the last block of C
  355. *
  356. KK = MOD((N-K),(MB-K))
  357. CTR = (N-K)/(MB-K)
  358. IF (KK.GT.0) THEN
  359. II=N-KK+1
  360. CALL CTPMQRT('R','C',M , KK, K, 0, NB, A(II,1), LDA,
  361. $ T(1, CTR*K+1), LDT, C(1,1), LDC,
  362. $ C(1,II), LDC, WORK, INFO )
  363. ELSE
  364. II=N+1
  365. END IF
  366. *
  367. DO I=II-(MB-K),MB+1,-(MB-K)
  368. *
  369. * Multiply Q to the current block of C (1:M,I:I+MB)
  370. *
  371. CTR = CTR - 1
  372. CALL CTPMQRT('R','C',M , MB-K, K, 0,NB, A(I,1), LDA,
  373. $ T(1,CTR*K+1), LDT, C(1,1), LDC,
  374. $ C(1,I), LDC, WORK, INFO )
  375. END DO
  376. *
  377. * Multiply Q to the first block of C (1:M,1:MB)
  378. *
  379. CALL CGEMQRT('R','C',M , MB, K, NB, A(1,1), LDA, T
  380. $ ,LDT ,C(1,1), LDC, WORK, INFO )
  381. *
  382. ELSE IF (RIGHT.AND.NOTRAN) THEN
  383. *
  384. * Multiply Q to the first block of C
  385. *
  386. KK = MOD((N-K),(MB-K))
  387. II=N-KK+1
  388. CTR = 1
  389. CALL CGEMQRT('R','N', M, MB , K, NB, A(1,1), LDA, T
  390. $ ,LDT ,C(1,1), LDC, WORK, INFO )
  391. *
  392. DO I=MB+1,II-MB+K,(MB-K)
  393. *
  394. * Multiply Q to the current block of C (1:M,I:I+MB)
  395. *
  396. CALL CTPMQRT('R','N', M, MB-K, K, 0,NB, A(I,1), LDA,
  397. $ T(1,CTR*K+1),LDT, C(1,1), LDC,
  398. $ C(1,I), LDC, WORK, INFO )
  399. CTR = CTR + 1
  400. *
  401. END DO
  402. IF(II.LE.N) THEN
  403. *
  404. * Multiply Q to the last block of C
  405. *
  406. CALL CTPMQRT('R','N', M, KK , K, 0,NB, A(II,1), LDA,
  407. $ T(1,CTR*K+1),LDT, C(1,1), LDC,
  408. $ C(1,II), LDC, WORK, INFO )
  409. *
  410. END IF
  411. *
  412. END IF
  413. *
  414. WORK(1) = SROUNDUP_LWORK(LW)
  415. RETURN
  416. *
  417. * End of CLAMTSQR
  418. *
  419. END