You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgelqf.f 7.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275
  1. *> \brief \b CGELQF
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CGELQF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelqf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelqf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelqf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, LDA, LWORK, M, N
  25. * ..
  26. * .. Array Arguments ..
  27. * COMPLEX A( LDA, * ), TAU( * ), WORK( * )
  28. * ..
  29. *
  30. *
  31. *> \par Purpose:
  32. * =============
  33. *>
  34. *> \verbatim
  35. *>
  36. *> CGELQF computes an LQ factorization of a complex M-by-N matrix A:
  37. *>
  38. *> A = ( L 0 ) * Q
  39. *>
  40. *> where:
  41. *>
  42. *> Q is a N-by-N orthogonal matrix;
  43. *> L is a lower-triangular M-by-M matrix;
  44. *> 0 is a M-by-(N-M) zero matrix, if M < N.
  45. *>
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] M
  52. *> \verbatim
  53. *> M is INTEGER
  54. *> The number of rows of the matrix A. M >= 0.
  55. *> \endverbatim
  56. *>
  57. *> \param[in] N
  58. *> \verbatim
  59. *> N is INTEGER
  60. *> The number of columns of the matrix A. N >= 0.
  61. *> \endverbatim
  62. *>
  63. *> \param[in,out] A
  64. *> \verbatim
  65. *> A is COMPLEX array, dimension (LDA,N)
  66. *> On entry, the M-by-N matrix A.
  67. *> On exit, the elements on and below the diagonal of the array
  68. *> contain the m-by-min(m,n) lower trapezoidal matrix L (L is
  69. *> lower triangular if m <= n); the elements above the diagonal,
  70. *> with the array TAU, represent the unitary matrix Q as a
  71. *> product of elementary reflectors (see Further Details).
  72. *> \endverbatim
  73. *>
  74. *> \param[in] LDA
  75. *> \verbatim
  76. *> LDA is INTEGER
  77. *> The leading dimension of the array A. LDA >= max(1,M).
  78. *> \endverbatim
  79. *>
  80. *> \param[out] TAU
  81. *> \verbatim
  82. *> TAU is COMPLEX array, dimension (min(M,N))
  83. *> The scalar factors of the elementary reflectors (see Further
  84. *> Details).
  85. *> \endverbatim
  86. *>
  87. *> \param[out] WORK
  88. *> \verbatim
  89. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  90. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] LWORK
  94. *> \verbatim
  95. *> LWORK is INTEGER
  96. *> The dimension of the array WORK. LWORK >= max(1,M).
  97. *> For optimum performance LWORK >= M*NB, where NB is the
  98. *> optimal blocksize.
  99. *>
  100. *> If LWORK = -1, then a workspace query is assumed; the routine
  101. *> only calculates the optimal size of the WORK array, returns
  102. *> this value as the first entry of the WORK array, and no error
  103. *> message related to LWORK is issued by XERBLA.
  104. *> \endverbatim
  105. *>
  106. *> \param[out] INFO
  107. *> \verbatim
  108. *> INFO is INTEGER
  109. *> = 0: successful exit
  110. *> < 0: if INFO = -i, the i-th argument had an illegal value
  111. *> \endverbatim
  112. *
  113. * Authors:
  114. * ========
  115. *
  116. *> \author Univ. of Tennessee
  117. *> \author Univ. of California Berkeley
  118. *> \author Univ. of Colorado Denver
  119. *> \author NAG Ltd.
  120. *
  121. *> \ingroup gelqf
  122. *
  123. *> \par Further Details:
  124. * =====================
  125. *>
  126. *> \verbatim
  127. *>
  128. *> The matrix Q is represented as a product of elementary reflectors
  129. *>
  130. *> Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n).
  131. *>
  132. *> Each H(i) has the form
  133. *>
  134. *> H(i) = I - tau * v * v**H
  135. *>
  136. *> where tau is a complex scalar, and v is a complex vector with
  137. *> v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
  138. *> A(i,i+1:n), and tau in TAU(i).
  139. *> \endverbatim
  140. *>
  141. * =====================================================================
  142. SUBROUTINE CGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
  143. *
  144. * -- LAPACK computational routine --
  145. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  146. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  147. *
  148. * .. Scalar Arguments ..
  149. INTEGER INFO, LDA, LWORK, M, N
  150. * ..
  151. * .. Array Arguments ..
  152. COMPLEX A( LDA, * ), TAU( * ), WORK( * )
  153. * ..
  154. *
  155. * =====================================================================
  156. *
  157. * .. Local Scalars ..
  158. LOGICAL LQUERY
  159. INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
  160. $ NBMIN, NX
  161. * ..
  162. * .. External Subroutines ..
  163. EXTERNAL CGELQ2, CLARFB, CLARFT, XERBLA
  164. * ..
  165. * .. Intrinsic Functions ..
  166. INTRINSIC MAX, MIN
  167. * ..
  168. * .. External Functions ..
  169. INTEGER ILAENV
  170. REAL SROUNDUP_LWORK
  171. EXTERNAL ILAENV, SROUNDUP_LWORK
  172. * ..
  173. * .. Executable Statements ..
  174. *
  175. * Test the input arguments
  176. *
  177. INFO = 0
  178. NB = ILAENV( 1, 'CGELQF', ' ', M, N, -1, -1 )
  179. LWKOPT = M*NB
  180. WORK( 1 ) = SROUNDUP_LWORK(LWKOPT)
  181. LQUERY = ( LWORK.EQ.-1 )
  182. IF( M.LT.0 ) THEN
  183. INFO = -1
  184. ELSE IF( N.LT.0 ) THEN
  185. INFO = -2
  186. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  187. INFO = -4
  188. ELSE IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
  189. INFO = -7
  190. END IF
  191. IF( INFO.NE.0 ) THEN
  192. CALL XERBLA( 'CGELQF', -INFO )
  193. RETURN
  194. ELSE IF( LQUERY ) THEN
  195. RETURN
  196. END IF
  197. *
  198. * Quick return if possible
  199. *
  200. K = MIN( M, N )
  201. IF( K.EQ.0 ) THEN
  202. WORK( 1 ) = 1
  203. RETURN
  204. END IF
  205. *
  206. NBMIN = 2
  207. NX = 0
  208. IWS = M
  209. IF( NB.GT.1 .AND. NB.LT.K ) THEN
  210. *
  211. * Determine when to cross over from blocked to unblocked code.
  212. *
  213. NX = MAX( 0, ILAENV( 3, 'CGELQF', ' ', M, N, -1, -1 ) )
  214. IF( NX.LT.K ) THEN
  215. *
  216. * Determine if workspace is large enough for blocked code.
  217. *
  218. LDWORK = M
  219. IWS = LDWORK*NB
  220. IF( LWORK.LT.IWS ) THEN
  221. *
  222. * Not enough workspace to use optimal NB: reduce NB and
  223. * determine the minimum value of NB.
  224. *
  225. NB = LWORK / LDWORK
  226. NBMIN = MAX( 2, ILAENV( 2, 'CGELQF', ' ', M, N, -1,
  227. $ -1 ) )
  228. END IF
  229. END IF
  230. END IF
  231. *
  232. IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
  233. *
  234. * Use blocked code initially
  235. *
  236. DO 10 I = 1, K - NX, NB
  237. IB = MIN( K-I+1, NB )
  238. *
  239. * Compute the LQ factorization of the current block
  240. * A(i:i+ib-1,i:n)
  241. *
  242. CALL CGELQ2( IB, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
  243. $ IINFO )
  244. IF( I+IB.LE.M ) THEN
  245. *
  246. * Form the triangular factor of the block reflector
  247. * H = H(i) H(i+1) . . . H(i+ib-1)
  248. *
  249. CALL CLARFT( 'Forward', 'Rowwise', N-I+1, IB, A( I, I ),
  250. $ LDA, TAU( I ), WORK, LDWORK )
  251. *
  252. * Apply H to A(i+ib:m,i:n) from the right
  253. *
  254. CALL CLARFB( 'Right', 'No transpose', 'Forward',
  255. $ 'Rowwise', M-I-IB+1, N-I+1, IB, A( I, I ),
  256. $ LDA, WORK, LDWORK, A( I+IB, I ), LDA,
  257. $ WORK( IB+1 ), LDWORK )
  258. END IF
  259. 10 CONTINUE
  260. ELSE
  261. I = 1
  262. END IF
  263. *
  264. * Use unblocked code to factor the last or only block.
  265. *
  266. IF( I.LE.K )
  267. $ CALL CGELQ2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
  268. $ IINFO )
  269. *
  270. WORK( 1 ) = SROUNDUP_LWORK(IWS)
  271. RETURN
  272. *
  273. * End of CGELQF
  274. *
  275. END