You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgeqp3rk.c 31 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle_() continue;
  235. #define myceiling_(w) {ceil(w)}
  236. #define myhuge_(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* -- translated by f2c (version 20000121).
  486. You must link the resulting object file with the libraries:
  487. -lf2c -lm (in that order)
  488. */
  489. /* Table of constant values */
  490. static integer c__1 = 1;
  491. static integer c_n1 = -1;
  492. static integer c__3 = 3;
  493. static integer c__2 = 2;
  494. /* Subroutine */ int zgeqp3rk_(integer *m, integer *n, integer *nrhs, integer
  495. *kmax, doublereal *abstol, doublereal *reltol, doublecomplex *a,
  496. integer *lda, integer *k, doublereal *maxc2nrmk, doublereal *
  497. relmaxc2nrmk, integer *jpiv, doublecomplex *tau, doublecomplex *work,
  498. integer *lwork, doublereal *rwork, integer *iwork, integer *info)
  499. {
  500. /* System generated locals */
  501. integer a_dim1, a_offset, i__1, i__2;
  502. doublereal d__1, d__2;
  503. doublecomplex z__1;
  504. /* Local variables */
  505. doublereal maxc2nrm;
  506. logical done;
  507. extern /* Subroutine */ int zlaqp2rk_(integer *, integer *, integer *,
  508. integer *, integer *, doublereal *, doublereal *, integer *,
  509. doublereal *, doublecomplex *, integer *, integer *, doublereal *,
  510. doublereal *, integer *, doublecomplex *, doublereal *,
  511. doublereal *, doublecomplex *, integer *), zlaqp3rk_(integer *,
  512. integer *, integer *, integer *, integer *, doublereal *,
  513. doublereal *, integer *, doublereal *, doublecomplex *, integer *,
  514. logical *, integer *, doublereal *, doublereal *, integer *,
  515. doublecomplex *, doublereal *, doublereal *, doublecomplex *,
  516. doublecomplex *, integer *, integer *, integer *);
  517. integer jmax, j, jmaxc2nrm, jmaxb, nbmin, iinfo, n_sub__, minmn;
  518. doublereal myhugeval;
  519. integer jb;
  520. extern doublereal dznrm2_(integer *, doublecomplex *, integer *);
  521. integer nb, kf;
  522. extern doublereal dlamch_(char *);
  523. extern integer idamax_(integer *, doublereal *, integer *);
  524. integer nx;
  525. doublereal safmin;
  526. extern /* Subroutine */ int xerbla_(char *, integer *);
  527. extern logical disnan_(doublereal *);
  528. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  529. integer *, integer *, ftnlen, ftnlen);
  530. integer kp1, lwkopt;
  531. logical lquery;
  532. integer jbf;
  533. doublereal eps;
  534. integer iws, ioffset;
  535. /* -- LAPACK computational routine -- */
  536. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  537. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  538. /* ===================================================================== */
  539. /* Test input arguments */
  540. /* ==================== */
  541. /* Parameter adjustments */
  542. a_dim1 = *lda;
  543. a_offset = 1 + a_dim1 * 1;
  544. a -= a_offset;
  545. --jpiv;
  546. --tau;
  547. --work;
  548. --rwork;
  549. --iwork;
  550. /* Function Body */
  551. *info = 0;
  552. lquery = *lwork == -1;
  553. if (*m < 0) {
  554. *info = -1;
  555. } else if (*n < 0) {
  556. *info = -2;
  557. } else if (*nrhs < 0) {
  558. *info = -3;
  559. } else if (*kmax < 0) {
  560. *info = -4;
  561. } else if (disnan_(abstol)) {
  562. *info = -5;
  563. } else if (disnan_(reltol)) {
  564. *info = -6;
  565. } else if (*lda < f2cmax(1,*m)) {
  566. *info = -8;
  567. }
  568. /* If the input parameters M, N, NRHS, KMAX, LDA are valid: */
  569. /* a) Test the input workspace size LWORK for the minimum */
  570. /* size requirement IWS. */
  571. /* b) Determine the optimal block size NB and optimal */
  572. /* workspace size LWKOPT to be returned in WORK(1) */
  573. /* in case of (1) LWORK < IWS, (2) LQUERY = .TRUE., */
  574. /* (3) when routine exits. */
  575. /* Here, IWS is the miminum workspace required for unblocked */
  576. /* code. */
  577. if (*info == 0) {
  578. minmn = f2cmin(*m,*n);
  579. if (minmn == 0) {
  580. iws = 1;
  581. lwkopt = 1;
  582. } else {
  583. /* Minimal workspace size in case of using only unblocked */
  584. /* BLAS 2 code in ZLAQP2RK. */
  585. /* 1) ZLAQP2RK: N+NRHS-1 to use in WORK array that is used */
  586. /* in ZLARF subroutine inside ZLAQP2RK to apply an */
  587. /* elementary reflector from the left. */
  588. /* TOTAL_WORK_SIZE = 3*N + NRHS - 1 */
  589. iws = *n + *nrhs - 1;
  590. /* Assign to NB optimal block size. */
  591. nb = ilaenv_(&c__1, "ZGEQP3RK", " ", m, n, &c_n1, &c_n1, (ftnlen)
  592. 8, (ftnlen)1);
  593. /* A formula for the optimal workspace size in case of using */
  594. /* both unblocked BLAS 2 in ZLAQP2RK and blocked BLAS 3 code */
  595. /* in ZLAQP3RK. */
  596. /* 1) ZGEQP3RK, ZLAQP2RK, ZLAQP3RK: 2*N to store full and */
  597. /* partial column 2-norms. */
  598. /* 2) ZLAQP2RK: N+NRHS-1 to use in WORK array that is used */
  599. /* in ZLARF subroutine to apply an elementary reflector */
  600. /* from the left. */
  601. /* 3) ZLAQP3RK: NB*(N+NRHS) to use in the work array F that */
  602. /* is used to apply a block reflector from */
  603. /* the left. */
  604. /* 4) ZLAQP3RK: NB to use in the auxilixary array AUX. */
  605. /* Sizes (2) and ((3) + (4)) should intersect, therefore */
  606. /* TOTAL_WORK_SIZE = 2*N + NB*( N+NRHS+1 ), given NBMIN=2. */
  607. lwkopt = (*n << 1) + nb * (*n + *nrhs + 1);
  608. }
  609. z__1.r = (doublereal) lwkopt, z__1.i = 0.;
  610. work[1].r = z__1.r, work[1].i = z__1.i;
  611. if (*lwork < iws && ! lquery) {
  612. *info = -15;
  613. }
  614. }
  615. /* NOTE: The optimal workspace size is returned in WORK(1), if */
  616. /* the input parameters M, N, NRHS, KMAX, LDA are valid. */
  617. if (*info != 0) {
  618. i__1 = -(*info);
  619. xerbla_("ZGEQP3RK", &i__1);
  620. return 0;
  621. } else if (lquery) {
  622. return 0;
  623. }
  624. /* Quick return if possible for M=0 or N=0. */
  625. if (minmn == 0) {
  626. *k = 0;
  627. *maxc2nrmk = 0.;
  628. *relmaxc2nrmk = 0.;
  629. z__1.r = (doublereal) lwkopt, z__1.i = 0.;
  630. work[1].r = z__1.r, work[1].i = z__1.i;
  631. return 0;
  632. }
  633. /* ================================================================== */
  634. /* Initialize column pivot array JPIV. */
  635. i__1 = *n;
  636. for (j = 1; j <= i__1; ++j) {
  637. jpiv[j] = j;
  638. }
  639. /* ================================================================== */
  640. /* Initialize storage for partial and exact column 2-norms. */
  641. /* a) The elements WORK(1:N) are used to store partial column */
  642. /* 2-norms of the matrix A, and may decrease in each computation */
  643. /* step; initialize to the values of complete columns 2-norms. */
  644. /* b) The elements WORK(N+1:2*N) are used to store complete column */
  645. /* 2-norms of the matrix A, they are not changed during the */
  646. /* computation; initialize the values of complete columns 2-norms. */
  647. i__1 = *n;
  648. for (j = 1; j <= i__1; ++j) {
  649. rwork[j] = dznrm2_(m, &a[j * a_dim1 + 1], &c__1);
  650. rwork[*n + j] = rwork[j];
  651. }
  652. /* ================================================================== */
  653. /* Compute the pivot column index and the maximum column 2-norm */
  654. /* for the whole original matrix stored in A(1:M,1:N). */
  655. kp1 = idamax_(n, &rwork[1], &c__1);
  656. /* ==================================================================. */
  657. if (disnan_(&maxc2nrm)) {
  658. /* Check if the matrix A contains NaN, set INFO parameter */
  659. /* to the column number where the first NaN is found and return */
  660. /* from the routine. */
  661. *k = 0;
  662. *info = kp1;
  663. /* Set MAXC2NRMK and RELMAXC2NRMK to NaN. */
  664. *maxc2nrmk = maxc2nrm;
  665. *relmaxc2nrmk = maxc2nrm;
  666. /* Array TAU is not set and contains undefined elements. */
  667. z__1.r = (doublereal) lwkopt, z__1.i = 0.;
  668. work[1].r = z__1.r, work[1].i = z__1.i;
  669. return 0;
  670. }
  671. /* =================================================================== */
  672. if (maxc2nrm == 0.) {
  673. /* Check is the matrix A is a zero matrix, set array TAU and */
  674. /* return from the routine. */
  675. *k = 0;
  676. *maxc2nrmk = 0.;
  677. *relmaxc2nrmk = 0.;
  678. i__1 = minmn;
  679. for (j = 1; j <= i__1; ++j) {
  680. i__2 = j;
  681. tau[i__2].r = 0., tau[i__2].i = 0.;
  682. }
  683. z__1.r = (doublereal) lwkopt, z__1.i = 0.;
  684. work[1].r = z__1.r, work[1].i = z__1.i;
  685. return 0;
  686. }
  687. /* =================================================================== */
  688. myhugeval = dlamch_("Overflow");
  689. if (maxc2nrm > myhugeval) {
  690. /* Check if the matrix A contains +Inf or -Inf, set INFO parameter */
  691. /* to the column number, where the first +/-Inf is found plus N, */
  692. /* and continue the computation. */
  693. *info = *n + kp1;
  694. }
  695. /* ================================================================== */
  696. /* Quick return if possible for the case when the first */
  697. /* stopping criterion is satisfied, i.e. KMAX = 0. */
  698. if (*kmax == 0) {
  699. *k = 0;
  700. *maxc2nrmk = maxc2nrm;
  701. *relmaxc2nrmk = 1.;
  702. i__1 = minmn;
  703. for (j = 1; j <= i__1; ++j) {
  704. i__2 = j;
  705. tau[i__2].r = 0., tau[i__2].i = 0.;
  706. }
  707. z__1.r = (doublereal) lwkopt, z__1.i = 0.;
  708. work[1].r = z__1.r, work[1].i = z__1.i;
  709. return 0;
  710. }
  711. /* ================================================================== */
  712. eps = dlamch_("Epsilon");
  713. /* Adjust ABSTOL */
  714. if (*abstol >= 0.) {
  715. safmin = dlamch_("Safe minimum");
  716. /* Computing MAX */
  717. d__1 = *abstol, d__2 = safmin * 2.;
  718. *abstol = f2cmax(d__1,d__2);
  719. }
  720. /* Adjust RELTOL */
  721. if (*reltol >= 0.) {
  722. *reltol = f2cmax(*reltol,eps);
  723. }
  724. /* =================================================================== */
  725. /* JMAX is the maximum index of the column to be factorized, */
  726. /* which is also limited by the first stopping criterion KMAX. */
  727. jmax = f2cmin(*kmax,minmn);
  728. /* =================================================================== */
  729. /* Quick return if possible for the case when the second or third */
  730. /* stopping criterion for the whole original matrix is satified, */
  731. /* i.e. MAXC2NRM <= ABSTOL or RELMAXC2NRM <= RELTOL */
  732. /* (which is ONE <= RELTOL). */
  733. if (maxc2nrm <= *abstol || 1. <= *reltol) {
  734. *k = 0;
  735. *maxc2nrmk = maxc2nrm;
  736. *relmaxc2nrmk = 1.;
  737. i__1 = minmn;
  738. for (j = 1; j <= i__1; ++j) {
  739. i__2 = j;
  740. tau[i__2].r = 0., tau[i__2].i = 0.;
  741. }
  742. z__1.r = (doublereal) lwkopt, z__1.i = 0.;
  743. work[1].r = z__1.r, work[1].i = z__1.i;
  744. return 0;
  745. }
  746. /* ================================================================== */
  747. /* Factorize columns */
  748. /* ================================================================== */
  749. /* Determine the block size. */
  750. nbmin = 2;
  751. nx = 0;
  752. if (nb > 1 && nb < minmn) {
  753. /* Determine when to cross over from blocked to unblocked code. */
  754. /* (for N less than NX, unblocked code should be used). */
  755. /* Computing MAX */
  756. i__1 = 0, i__2 = ilaenv_(&c__3, "ZGEQP3RK", " ", m, n, &c_n1, &c_n1, (
  757. ftnlen)8, (ftnlen)1);
  758. nx = f2cmax(i__1,i__2);
  759. if (nx < minmn) {
  760. /* Determine if workspace is large enough for blocked code. */
  761. if (*lwork < lwkopt) {
  762. /* Not enough workspace to use optimal block size that */
  763. /* is currently stored in NB. */
  764. /* Reduce NB and determine the minimum value of NB. */
  765. nb = (*lwork - (*n << 1)) / (*n + 1);
  766. /* Computing MAX */
  767. i__1 = 2, i__2 = ilaenv_(&c__2, "ZGEQP3RK", " ", m, n, &c_n1,
  768. &c_n1, (ftnlen)8, (ftnlen)1);
  769. nbmin = f2cmax(i__1,i__2);
  770. }
  771. }
  772. }
  773. /* ================================================================== */
  774. /* DONE is the boolean flag to rerpresent the case when the */
  775. /* factorization completed in the block factorization routine, */
  776. /* before the end of the block. */
  777. done = FALSE_;
  778. /* J is the column index. */
  779. j = 1;
  780. /* (1) Use blocked code initially. */
  781. /* JMAXB is the maximum column index of the block, when the */
  782. /* blocked code is used, is also limited by the first stopping */
  783. /* criterion KMAX. */
  784. /* Computing MIN */
  785. i__1 = *kmax, i__2 = minmn - nx;
  786. jmaxb = f2cmin(i__1,i__2);
  787. if (nb >= nbmin && nb < jmax && jmaxb > 0) {
  788. /* Loop over the column blocks of the matrix A(1:M,1:JMAXB). Here: */
  789. /* J is the column index of a column block; */
  790. /* JB is the column block size to pass to block factorization */
  791. /* routine in a loop step; */
  792. /* JBF is the number of columns that were actually factorized */
  793. /* that was returned by the block factorization routine */
  794. /* in a loop step, JBF <= JB; */
  795. /* N_SUB is the number of columns in the submatrix; */
  796. /* IOFFSET is the number of rows that should not be factorized. */
  797. while(j <= jmaxb) {
  798. /* Computing MIN */
  799. i__1 = nb, i__2 = jmaxb - j + 1;
  800. jb = f2cmin(i__1,i__2);
  801. n_sub__ = *n - j + 1;
  802. ioffset = j - 1;
  803. /* Factorize JB columns among the columns A(J:N). */
  804. i__1 = *n + *nrhs - j + 1;
  805. zlaqp3rk_(m, &n_sub__, nrhs, &ioffset, &jb, abstol, reltol, &kp1,
  806. &maxc2nrm, &a[j * a_dim1 + 1], lda, &done, &jbf,
  807. maxc2nrmk, relmaxc2nrmk, &jpiv[j], &tau[j], &rwork[j], &
  808. rwork[*n + j], &work[1], &work[jb + 1], &i__1, &iwork[1],
  809. &iinfo);
  810. /* Set INFO on the first occurence of Inf. */
  811. if (iinfo > n_sub__ && *info == 0) {
  812. *info = (ioffset << 1) + iinfo;
  813. }
  814. if (done) {
  815. /* Either the submatrix is zero before the end of the */
  816. /* column block, or ABSTOL or RELTOL criterion is */
  817. /* satisfied before the end of the column block, we can */
  818. /* return from the routine. Perform the following before */
  819. /* returning: */
  820. /* a) Set the number of factorized columns K, */
  821. /* K = IOFFSET + JBF from the last call of blocked */
  822. /* routine. */
  823. /* NOTE: 1) MAXC2NRMK and RELMAXC2NRMK are returned */
  824. /* by the block factorization routine; */
  825. /* 2) The remaining TAUs are set to ZERO by the */
  826. /* block factorization routine. */
  827. *k = ioffset + jbf;
  828. /* Set INFO on the first occurrence of NaN, NaN takes */
  829. /* prcedence over Inf. */
  830. if (iinfo <= n_sub__ && iinfo > 0) {
  831. *info = ioffset + iinfo;
  832. }
  833. /* Return from the routine. */
  834. z__1.r = (doublereal) lwkopt, z__1.i = 0.;
  835. work[1].r = z__1.r, work[1].i = z__1.i;
  836. return 0;
  837. }
  838. j += jbf;
  839. }
  840. }
  841. /* Use unblocked code to factor the last or only block. */
  842. /* J = JMAX+1 means we factorized the maximum possible number of */
  843. /* columns, that is in ELSE clause we need to compute */
  844. /* the MAXC2NORM and RELMAXC2NORM to return after we processed */
  845. /* the blocks. */
  846. if (j <= jmax) {
  847. /* N_SUB is the number of columns in the submatrix; */
  848. /* IOFFSET is the number of rows that should not be factorized. */
  849. n_sub__ = *n - j + 1;
  850. ioffset = j - 1;
  851. i__1 = jmax - j + 1;
  852. zlaqp2rk_(m, &n_sub__, nrhs, &ioffset, &i__1, abstol, reltol, &kp1, &
  853. maxc2nrm, &a[j * a_dim1 + 1], lda, &kf, maxc2nrmk,
  854. relmaxc2nrmk, &jpiv[j], &tau[j], &rwork[j], &rwork[*n + j], &
  855. work[1], &iinfo);
  856. /* ABSTOL or RELTOL criterion is satisfied when the number of */
  857. /* the factorized columns KF is smaller then the number */
  858. /* of columns JMAX-J+1 supplied to be factorized by the */
  859. /* unblocked routine, we can return from */
  860. /* the routine. Perform the following before returning: */
  861. /* a) Set the number of factorized columns K, */
  862. /* b) MAXC2NRMK and RELMAXC2NRMK are returned by the */
  863. /* unblocked factorization routine above. */
  864. *k = j - 1 + kf;
  865. /* Set INFO on the first exception occurence. */
  866. /* Set INFO on the first exception occurence of Inf or NaN, */
  867. /* (NaN takes precedence over Inf). */
  868. if (iinfo > n_sub__ && *info == 0) {
  869. *info = (ioffset << 1) + iinfo;
  870. } else if (iinfo <= n_sub__ && iinfo > 0) {
  871. *info = ioffset + iinfo;
  872. }
  873. } else {
  874. /* Compute the return values for blocked code. */
  875. /* Set the number of factorized columns if the unblocked routine */
  876. /* was not called. */
  877. *k = jmax;
  878. /* If there exits a residual matrix after the blocked code: */
  879. /* 1) compute the values of MAXC2NRMK, RELMAXC2NRMK of the */
  880. /* residual matrix, otherwise set them to ZERO; */
  881. /* 2) Set TAU(K+1:MINMN) to ZERO. */
  882. if (*k < minmn) {
  883. i__1 = *n - *k;
  884. jmaxc2nrm = *k + idamax_(&i__1, &rwork[*k + 1], &c__1);
  885. *maxc2nrmk = rwork[jmaxc2nrm];
  886. if (*k == 0) {
  887. *relmaxc2nrmk = 1.;
  888. } else {
  889. *relmaxc2nrmk = *maxc2nrmk / maxc2nrm;
  890. }
  891. i__1 = minmn;
  892. for (j = *k + 1; j <= i__1; ++j) {
  893. i__2 = j;
  894. tau[i__2].r = 0., tau[i__2].i = 0.;
  895. }
  896. } else {
  897. *maxc2nrmk = 0.;
  898. *relmaxc2nrmk = 0.;
  899. }
  900. /* END IF( J.LE.JMAX ) THEN */
  901. }
  902. z__1.r = (doublereal) lwkopt, z__1.i = 0.;
  903. work[1].r = z__1.r, work[1].i = z__1.i;
  904. return 0;
  905. /* End of ZGEQP3RK */
  906. } /* zgeqp3rk_ */