You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slaqp3rk.c 35 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle_() continue;
  235. #define myceiling_(w) {ceil(w)}
  236. #define myhuge_(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* -- translated by f2c (version 20000121).
  486. You must link the resulting object file with the libraries:
  487. -lf2c -lm (in that order)
  488. */
  489. /* Table of constant values */
  490. static integer c__1 = 1;
  491. static real c_b7 = -1.f;
  492. static real c_b8 = 1.f;
  493. static real c_b30 = 0.f;
  494. /* Subroutine */ int slaqp3rk_(integer *m, integer *n, integer *nrhs, integer
  495. *ioffset, integer *nb, real *abstol, real *reltol, integer *kp1, real
  496. *maxc2nrm, real *a, integer *lda, logical *done, integer *kb, real *
  497. maxc2nrmk, real *relmaxc2nrmk, integer *jpiv, real *tau, real *vn1,
  498. real *vn2, real *auxv, real *f, integer *ldf, integer *iwork, integer
  499. *info)
  500. {
  501. /* System generated locals */
  502. integer a_dim1, a_offset, f_dim1, f_offset, i__1, i__2;
  503. real r__1, r__2;
  504. /* Local variables */
  505. real temp, temp2;
  506. extern real snrm2_(integer *, real *, integer *);
  507. integer i__, j, k;
  508. real tol3z;
  509. extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *,
  510. integer *, real *, real *, integer *, real *, integer *, real *,
  511. real *, integer *);
  512. integer itemp;
  513. extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *,
  514. real *, integer *, real *, integer *, real *, real *, integer *);
  515. integer minmnfact;
  516. extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *,
  517. integer *);
  518. real myhugeval;
  519. integer minmnupdt, if__, kp;
  520. extern real slamch_(char *);
  521. extern /* Subroutine */ int slarfg_(integer *, real *, real *, integer *,
  522. real *);
  523. integer lsticc;
  524. extern integer isamax_(integer *, real *, integer *);
  525. extern logical sisnan_(real *);
  526. real aik;
  527. /* -- LAPACK auxiliary routine -- */
  528. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  529. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  530. /* ===================================================================== */
  531. /* Initialize INFO */
  532. /* Parameter adjustments */
  533. a_dim1 = *lda;
  534. a_offset = 1 + a_dim1 * 1;
  535. a -= a_offset;
  536. --jpiv;
  537. --tau;
  538. --vn1;
  539. --vn2;
  540. --auxv;
  541. f_dim1 = *ldf;
  542. f_offset = 1 + f_dim1 * 1;
  543. f -= f_offset;
  544. --iwork;
  545. /* Function Body */
  546. *info = 0;
  547. /* MINMNFACT in the smallest dimension of the submatrix */
  548. /* A(IOFFSET+1:M,1:N) to be factorized. */
  549. /* Computing MIN */
  550. i__1 = *m - *ioffset;
  551. minmnfact = f2cmin(i__1,*n);
  552. /* Computing MIN */
  553. i__1 = *m - *ioffset, i__2 = *n + *nrhs;
  554. minmnupdt = f2cmin(i__1,i__2);
  555. *nb = f2cmin(*nb,minmnfact);
  556. tol3z = sqrt(slamch_("Epsilon"));
  557. myhugeval = slamch_("Overflow");
  558. /* Compute factorization in a while loop over NB columns, */
  559. /* K is the column index in the block A(1:M,1:N). */
  560. k = 0;
  561. lsticc = 0;
  562. *done = FALSE_;
  563. while(k < *nb && lsticc == 0) {
  564. ++k;
  565. i__ = *ioffset + k;
  566. if (i__ == 1) {
  567. /* We are at the first column of the original whole matrix A_orig, */
  568. /* therefore we use the computed KP1 and MAXC2NRM from the */
  569. /* main routine. */
  570. kp = *kp1;
  571. } else {
  572. /* Determine the pivot column in K-th step, i.e. the index */
  573. /* of the column with the maximum 2-norm in the */
  574. /* submatrix A(I:M,K:N). */
  575. i__1 = *n - k + 1;
  576. kp = k - 1 + isamax_(&i__1, &vn1[k], &c__1);
  577. /* Determine the maximum column 2-norm and the relative maximum */
  578. /* column 2-norm of the submatrix A(I:M,K:N) in step K. */
  579. *maxc2nrmk = vn1[kp];
  580. /* ============================================================ */
  581. /* Check if the submatrix A(I:M,K:N) contains NaN, set */
  582. /* INFO parameter to the column number, where the first NaN */
  583. /* is found and return from the routine. */
  584. /* We need to check the condition only if the */
  585. /* column index (same as row index) of the original whole */
  586. /* matrix is larger than 1, since the condition for whole */
  587. /* original matrix is checked in the main routine. */
  588. if (sisnan_(maxc2nrmk)) {
  589. *done = TRUE_;
  590. /* Set KB, the number of factorized partial columns */
  591. /* that are non-zero in each step in the block, */
  592. /* i.e. the rank of the factor R. */
  593. /* Set IF, the number of processed rows in the block, which */
  594. /* is the same as the number of processed rows in */
  595. /* the original whole matrix A_orig. */
  596. *kb = k - 1;
  597. if__ = i__ - 1;
  598. *info = *kb + kp;
  599. /* Set RELMAXC2NRMK to NaN. */
  600. *relmaxc2nrmk = *maxc2nrmk;
  601. /* There is no need to apply the block reflector to the */
  602. /* residual of the matrix A stored in A(KB+1:M,KB+1:N), */
  603. /* since the submatrix contains NaN and we stop */
  604. /* the computation. */
  605. /* But, we need to apply the block reflector to the residual */
  606. /* right hand sides stored in A(KB+1:M,N+1:N+NRHS), if the */
  607. /* residual right hand sides exist. This occurs */
  608. /* when ( NRHS != 0 AND KB <= (M-IOFFSET) ): */
  609. /* A(I+1:M,N+1:N+NRHS) := A(I+1:M,N+1:N+NRHS) - */
  610. /* A(I+1:M,1:KB) * F(N+1:N+NRHS,1:KB)**T. */
  611. if (*nrhs > 0 && *kb < *m - *ioffset) {
  612. i__1 = *m - if__;
  613. sgemm_("No transpose", "Transpose", &i__1, nrhs, kb, &
  614. c_b7, &a[if__ + 1 + a_dim1], lda, &f[*n + 1 +
  615. f_dim1], ldf, &c_b8, &a[if__ + 1 + (*n + 1) *
  616. a_dim1], lda);
  617. }
  618. /* There is no need to recompute the 2-norm of the */
  619. /* difficult columns, since we stop the factorization. */
  620. /* Array TAU(KF+1:MINMNFACT) is not set and contains */
  621. /* undefined elements. */
  622. /* Return from the routine. */
  623. return 0;
  624. }
  625. /* Quick return, if the submatrix A(I:M,K:N) is */
  626. /* a zero matrix. We need to check it only if the column index */
  627. /* (same as row index) is larger than 1, since the condition */
  628. /* for the whole original matrix A_orig is checked in the main */
  629. /* routine. */
  630. if (*maxc2nrmk == 0.f) {
  631. *done = TRUE_;
  632. /* Set KB, the number of factorized partial columns */
  633. /* that are non-zero in each step in the block, */
  634. /* i.e. the rank of the factor R. */
  635. /* Set IF, the number of processed rows in the block, which */
  636. /* is the same as the number of processed rows in */
  637. /* the original whole matrix A_orig. */
  638. *kb = k - 1;
  639. if__ = i__ - 1;
  640. *relmaxc2nrmk = 0.f;
  641. /* There is no need to apply the block reflector to the */
  642. /* residual of the matrix A stored in A(KB+1:M,KB+1:N), */
  643. /* since the submatrix is zero and we stop the computation. */
  644. /* But, we need to apply the block reflector to the residual */
  645. /* right hand sides stored in A(KB+1:M,N+1:N+NRHS), if the */
  646. /* residual right hand sides exist. This occurs */
  647. /* when ( NRHS != 0 AND KB <= (M-IOFFSET) ): */
  648. /* A(I+1:M,N+1:N+NRHS) := A(I+1:M,N+1:N+NRHS) - */
  649. /* A(I+1:M,1:KB) * F(N+1:N+NRHS,1:KB)**T. */
  650. if (*nrhs > 0 && *kb < *m - *ioffset) {
  651. i__1 = *m - if__;
  652. sgemm_("No transpose", "Transpose", &i__1, nrhs, kb, &
  653. c_b7, &a[if__ + 1 + a_dim1], lda, &f[*n + 1 +
  654. f_dim1], ldf, &c_b8, &a[if__ + 1 + (*n + 1) *
  655. a_dim1], lda);
  656. }
  657. /* There is no need to recompute the 2-norm of the */
  658. /* difficult columns, since we stop the factorization. */
  659. /* Set TAUs corresponding to the columns that were not */
  660. /* factorized to ZERO, i.e. set TAU(KB+1:MINMNFACT) = ZERO, */
  661. /* which is equivalent to seting TAU(K:MINMNFACT) = ZERO. */
  662. i__1 = minmnfact;
  663. for (j = k; j <= i__1; ++j) {
  664. tau[j] = 0.f;
  665. }
  666. /* Return from the routine. */
  667. return 0;
  668. }
  669. /* ============================================================ */
  670. /* Check if the submatrix A(I:M,K:N) contains Inf, */
  671. /* set INFO parameter to the column number, where */
  672. /* the first Inf is found plus N, and continue */
  673. /* the computation. */
  674. /* We need to check the condition only if the */
  675. /* column index (same as row index) of the original whole */
  676. /* matrix is larger than 1, since the condition for whole */
  677. /* original matrix is checked in the main routine. */
  678. if (*info == 0 && *maxc2nrmk > myhugeval) {
  679. *info = *n + k - 1 + kp;
  680. }
  681. /* ============================================================ */
  682. /* Test for the second and third tolerance stopping criteria. */
  683. /* NOTE: There is no need to test for ABSTOL.GE.ZERO, since */
  684. /* MAXC2NRMK is non-negative. Similarly, there is no need */
  685. /* to test for RELTOL.GE.ZERO, since RELMAXC2NRMK is */
  686. /* non-negative. */
  687. /* We need to check the condition only if the */
  688. /* column index (same as row index) of the original whole */
  689. /* matrix is larger than 1, since the condition for whole */
  690. /* original matrix is checked in the main routine. */
  691. *relmaxc2nrmk = *maxc2nrmk / *maxc2nrm;
  692. if (*maxc2nrmk <= *abstol || *relmaxc2nrmk <= *reltol) {
  693. *done = TRUE_;
  694. /* Set KB, the number of factorized partial columns */
  695. /* that are non-zero in each step in the block, */
  696. /* i.e. the rank of the factor R. */
  697. /* Set IF, the number of processed rows in the block, which */
  698. /* is the same as the number of processed rows in */
  699. /* the original whole matrix A_orig; */
  700. *kb = k - 1;
  701. if__ = i__ - 1;
  702. /* Apply the block reflector to the residual of the */
  703. /* matrix A and the residual of the right hand sides B, if */
  704. /* the residual matrix and and/or the residual of the right */
  705. /* hand sides exist, i.e. if the submatrix */
  706. /* A(I+1:M,KB+1:N+NRHS) exists. This occurs when */
  707. /* KB < MINMNUPDT = f2cmin( M-IOFFSET, N+NRHS ): */
  708. /* A(IF+1:M,K+1:N+NRHS) := A(IF+1:M,KB+1:N+NRHS) - */
  709. /* A(IF+1:M,1:KB) * F(KB+1:N+NRHS,1:KB)**T. */
  710. if (*kb < minmnupdt) {
  711. i__1 = *m - if__;
  712. i__2 = *n + *nrhs - *kb;
  713. sgemm_("No transpose", "Transpose", &i__1, &i__2, kb, &
  714. c_b7, &a[if__ + 1 + a_dim1], lda, &f[*kb + 1 +
  715. f_dim1], ldf, &c_b8, &a[if__ + 1 + (*kb + 1) *
  716. a_dim1], lda);
  717. }
  718. /* There is no need to recompute the 2-norm of the */
  719. /* difficult columns, since we stop the factorization. */
  720. /* Set TAUs corresponding to the columns that were not */
  721. /* factorized to ZERO, i.e. set TAU(KB+1:MINMNFACT) = ZERO, */
  722. /* which is equivalent to seting TAU(K:MINMNFACT) = ZERO. */
  723. i__1 = minmnfact;
  724. for (j = k; j <= i__1; ++j) {
  725. tau[j] = 0.f;
  726. }
  727. /* Return from the routine. */
  728. return 0;
  729. }
  730. /* ============================================================ */
  731. /* End ELSE of IF(I.EQ.1) */
  732. }
  733. /* =============================================================== */
  734. /* If the pivot column is not the first column of the */
  735. /* subblock A(1:M,K:N): */
  736. /* 1) swap the K-th column and the KP-th pivot column */
  737. /* in A(1:M,1:N); */
  738. /* 2) swap the K-th row and the KP-th row in F(1:N,1:K-1) */
  739. /* 3) copy the K-th element into the KP-th element of the partial */
  740. /* and exact 2-norm vectors VN1 and VN2. (Swap is not needed */
  741. /* for VN1 and VN2 since we use the element with the index */
  742. /* larger than K in the next loop step.) */
  743. /* 4) Save the pivot interchange with the indices relative to the */
  744. /* the original matrix A_orig, not the block A(1:M,1:N). */
  745. if (kp != k) {
  746. sswap_(m, &a[kp * a_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1);
  747. i__1 = k - 1;
  748. sswap_(&i__1, &f[kp + f_dim1], ldf, &f[k + f_dim1], ldf);
  749. vn1[kp] = vn1[k];
  750. vn2[kp] = vn2[k];
  751. itemp = jpiv[kp];
  752. jpiv[kp] = jpiv[k];
  753. jpiv[k] = itemp;
  754. }
  755. /* Apply previous Householder reflectors to column K: */
  756. /* A(I:M,K) := A(I:M,K) - A(I:M,1:K-1)*F(K,1:K-1)**T. */
  757. if (k > 1) {
  758. i__1 = *m - i__ + 1;
  759. i__2 = k - 1;
  760. sgemv_("No transpose", &i__1, &i__2, &c_b7, &a[i__ + a_dim1], lda,
  761. &f[k + f_dim1], ldf, &c_b8, &a[i__ + k * a_dim1], &c__1);
  762. }
  763. /* Generate elementary reflector H(k) using the column A(I:M,K). */
  764. if (i__ < *m) {
  765. i__1 = *m - i__ + 1;
  766. slarfg_(&i__1, &a[i__ + k * a_dim1], &a[i__ + 1 + k * a_dim1], &
  767. c__1, &tau[k]);
  768. } else {
  769. tau[k] = 0.f;
  770. }
  771. /* Check if TAU(K) contains NaN, set INFO parameter */
  772. /* to the column number where NaN is found and return from */
  773. /* the routine. */
  774. /* NOTE: There is no need to check TAU(K) for Inf, */
  775. /* since SLARFG cannot produce TAU(K) or Householder vector */
  776. /* below the diagonal containing Inf. Only BETA on the diagonal, */
  777. /* returned by SLARFG can contain Inf, which requires */
  778. /* TAU(K) to contain NaN. Therefore, this case of generating Inf */
  779. /* by SLARFG is covered by checking TAU(K) for NaN. */
  780. if (sisnan_(&tau[k])) {
  781. *done = TRUE_;
  782. /* Set KB, the number of factorized partial columns */
  783. /* that are non-zero in each step in the block, */
  784. /* i.e. the rank of the factor R. */
  785. /* Set IF, the number of processed rows in the block, which */
  786. /* is the same as the number of processed rows in */
  787. /* the original whole matrix A_orig. */
  788. *kb = k - 1;
  789. if__ = i__ - 1;
  790. *info = k;
  791. /* Set MAXC2NRMK and RELMAXC2NRMK to NaN. */
  792. *maxc2nrmk = tau[k];
  793. *relmaxc2nrmk = tau[k];
  794. /* There is no need to apply the block reflector to the */
  795. /* residual of the matrix A stored in A(KB+1:M,KB+1:N), */
  796. /* since the submatrix contains NaN and we stop */
  797. /* the computation. */
  798. /* But, we need to apply the block reflector to the residual */
  799. /* right hand sides stored in A(KB+1:M,N+1:N+NRHS), if the */
  800. /* residual right hand sides exist. This occurs */
  801. /* when ( NRHS != 0 AND KB <= (M-IOFFSET) ): */
  802. /* A(I+1:M,N+1:N+NRHS) := A(I+1:M,N+1:N+NRHS) - */
  803. /* A(I+1:M,1:KB) * F(N+1:N+NRHS,1:KB)**T. */
  804. if (*nrhs > 0 && *kb < *m - *ioffset) {
  805. i__1 = *m - if__;
  806. sgemm_("No transpose", "Transpose", &i__1, nrhs, kb, &c_b7, &
  807. a[if__ + 1 + a_dim1], lda, &f[*n + 1 + f_dim1], ldf, &
  808. c_b8, &a[if__ + 1 + (*n + 1) * a_dim1], lda);
  809. }
  810. /* There is no need to recompute the 2-norm of the */
  811. /* difficult columns, since we stop the factorization. */
  812. /* Array TAU(KF+1:MINMNFACT) is not set and contains */
  813. /* undefined elements. */
  814. /* Return from the routine. */
  815. return 0;
  816. }
  817. /* =============================================================== */
  818. aik = a[i__ + k * a_dim1];
  819. a[i__ + k * a_dim1] = 1.f;
  820. /* =============================================================== */
  821. /* Compute the current K-th column of F: */
  822. /* 1) F(K+1:N,K) := tau(K) * A(I:M,K+1:N)**T * A(I:M,K). */
  823. if (k < *n + *nrhs) {
  824. i__1 = *m - i__ + 1;
  825. i__2 = *n + *nrhs - k;
  826. sgemv_("Transpose", &i__1, &i__2, &tau[k], &a[i__ + (k + 1) *
  827. a_dim1], lda, &a[i__ + k * a_dim1], &c__1, &c_b30, &f[k +
  828. 1 + k * f_dim1], &c__1);
  829. }
  830. /* 2) Zero out elements above and on the diagonal of the */
  831. /* column K in matrix F, i.e elements F(1:K,K). */
  832. i__1 = k;
  833. for (j = 1; j <= i__1; ++j) {
  834. f[j + k * f_dim1] = 0.f;
  835. }
  836. /* 3) Incremental updating of the K-th column of F: */
  837. /* F(1:N,K) := F(1:N,K) - tau(K) * F(1:N,1:K-1) * A(I:M,1:K-1)**T */
  838. /* * A(I:M,K). */
  839. if (k > 1) {
  840. i__1 = *m - i__ + 1;
  841. i__2 = k - 1;
  842. r__1 = -tau[k];
  843. sgemv_("Transpose", &i__1, &i__2, &r__1, &a[i__ + a_dim1], lda, &
  844. a[i__ + k * a_dim1], &c__1, &c_b30, &auxv[1], &c__1);
  845. i__1 = *n + *nrhs;
  846. i__2 = k - 1;
  847. sgemv_("No transpose", &i__1, &i__2, &c_b8, &f[f_dim1 + 1], ldf, &
  848. auxv[1], &c__1, &c_b8, &f[k * f_dim1 + 1], &c__1);
  849. }
  850. /* =============================================================== */
  851. /* Update the current I-th row of A: */
  852. /* A(I,K+1:N+NRHS) := A(I,K+1:N+NRHS) */
  853. /* - A(I,1:K)*F(K+1:N+NRHS,1:K)**T. */
  854. if (k < *n + *nrhs) {
  855. i__1 = *n + *nrhs - k;
  856. sgemv_("No transpose", &i__1, &k, &c_b7, &f[k + 1 + f_dim1], ldf,
  857. &a[i__ + a_dim1], lda, &c_b8, &a[i__ + (k + 1) * a_dim1],
  858. lda);
  859. }
  860. a[i__ + k * a_dim1] = aik;
  861. /* Update the partial column 2-norms for the residual matrix, */
  862. /* only if the residual matrix A(I+1:M,K+1:N) exists, i.e. */
  863. /* when K < MINMNFACT = f2cmin( M-IOFFSET, N ). */
  864. if (k < minmnfact) {
  865. i__1 = *n;
  866. for (j = k + 1; j <= i__1; ++j) {
  867. if (vn1[j] != 0.f) {
  868. /* NOTE: The following lines follow from the analysis in */
  869. /* Lapack Working Note 176. */
  870. temp = (r__1 = a[i__ + j * a_dim1], abs(r__1)) / vn1[j];
  871. /* Computing MAX */
  872. r__1 = 0.f, r__2 = (temp + 1.f) * (1.f - temp);
  873. temp = f2cmax(r__1,r__2);
  874. /* Computing 2nd power */
  875. r__1 = vn1[j] / vn2[j];
  876. temp2 = temp * (r__1 * r__1);
  877. if (temp2 <= tol3z) {
  878. /* At J-index, we have a difficult column for the */
  879. /* update of the 2-norm. Save the index of the previous */
  880. /* difficult column in IWORK(J-1). */
  881. /* NOTE: ILSTCC > 1, threfore we can use IWORK only */
  882. /* with N-1 elements, where the elements are */
  883. /* shifted by 1 to the left. */
  884. iwork[j - 1] = lsticc;
  885. /* Set the index of the last difficult column LSTICC. */
  886. lsticc = j;
  887. } else {
  888. vn1[j] *= sqrt(temp);
  889. }
  890. }
  891. }
  892. }
  893. /* End of while loop. */
  894. }
  895. /* Now, afler the loop: */
  896. /* Set KB, the number of factorized columns in the block; */
  897. /* Set IF, the number of processed rows in the block, which */
  898. /* is the same as the number of processed rows in */
  899. /* the original whole matrix A_orig, IF = IOFFSET + KB. */
  900. *kb = k;
  901. if__ = i__;
  902. /* Apply the block reflector to the residual of the matrix A */
  903. /* and the residual of the right hand sides B, if the residual */
  904. /* matrix and and/or the residual of the right hand sides */
  905. /* exist, i.e. if the submatrix A(I+1:M,KB+1:N+NRHS) exists. */
  906. /* This occurs when KB < MINMNUPDT = f2cmin( M-IOFFSET, N+NRHS ): */
  907. /* A(IF+1:M,K+1:N+NRHS) := A(IF+1:M,KB+1:N+NRHS) - */
  908. /* A(IF+1:M,1:KB) * F(KB+1:N+NRHS,1:KB)**T. */
  909. if (*kb < minmnupdt) {
  910. i__1 = *m - if__;
  911. i__2 = *n + *nrhs - *kb;
  912. sgemm_("No transpose", "Transpose", &i__1, &i__2, kb, &c_b7, &a[if__
  913. + 1 + a_dim1], lda, &f[*kb + 1 + f_dim1], ldf, &c_b8, &a[if__
  914. + 1 + (*kb + 1) * a_dim1], lda);
  915. }
  916. /* Recompute the 2-norm of the difficult columns. */
  917. /* Loop over the index of the difficult columns from the largest */
  918. /* to the smallest index. */
  919. while(lsticc > 0) {
  920. /* LSTICC is the index of the last difficult column is greater */
  921. /* than 1. */
  922. /* ITEMP is the index of the previous difficult column. */
  923. itemp = iwork[lsticc - 1];
  924. /* Compute the 2-norm explicilty for the last difficult column and */
  925. /* save it in the partial and exact 2-norm vectors VN1 and VN2. */
  926. /* NOTE: The computation of VN1( LSTICC ) relies on the fact that */
  927. /* SNRM2 does not fail on vectors with norm below the value of */
  928. /* SQRT(SLAMCH('S')) */
  929. i__1 = *m - if__;
  930. vn1[lsticc] = snrm2_(&i__1, &a[if__ + 1 + lsticc * a_dim1], &c__1);
  931. vn2[lsticc] = vn1[lsticc];
  932. /* Downdate the index of the last difficult column to */
  933. /* the index of the previous difficult column. */
  934. lsticc = itemp;
  935. }
  936. return 0;
  937. /* End of SLAQP3RK */
  938. } /* slaqp3rk_ */