You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgeqp3rk.c 30 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle_() continue;
  235. #define myceiling_(w) {ceil(w)}
  236. #define myhuge_(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* -- translated by f2c (version 20000121).
  486. You must link the resulting object file with the libraries:
  487. -lf2c -lm (in that order)
  488. */
  489. /* Table of constant values */
  490. static integer c__1 = 1;
  491. static integer c_n1 = -1;
  492. static integer c__3 = 3;
  493. static integer c__2 = 2;
  494. /* Subroutine */ int sgeqp3rk_(integer *m, integer *n, integer *nrhs, integer
  495. *kmax, real *abstol, real *reltol, real *a, integer *lda, integer *k,
  496. real *maxc2nrmk, real *relmaxc2nrmk, integer *jpiv, real *tau, real *
  497. work, integer *lwork, integer *iwork, integer *info)
  498. {
  499. /* System generated locals */
  500. integer a_dim1, a_offset, i__1, i__2;
  501. real r__1, r__2;
  502. /* Local variables */
  503. real maxc2nrm;
  504. extern /* Subroutine */ int slaqp2rk_(integer *, integer *, integer *,
  505. integer *, integer *, real *, real *, integer *, real *, real *,
  506. integer *, integer *, real *, real *, integer *, real *, real *,
  507. real *, real *, integer *), slaqp3rk_(integer *, integer *,
  508. integer *, integer *, integer *, real *, real *, integer *, real *
  509. , real *, integer *, logical *, integer *, real *, real *,
  510. integer *, real *, real *, real *, real *, real *, integer *,
  511. integer *, integer *);
  512. logical done;
  513. integer jmax;
  514. extern real snrm2_(integer *, real *, integer *);
  515. integer j, jmaxc2nrm, jmaxb, nbmin, iinfo, n_sub__, minmn;
  516. real myhugeval;
  517. integer jb, nb, kf, nx;
  518. extern real slamch_(char *);
  519. real safmin;
  520. extern /* Subroutine */ int xerbla_(char *, integer *);
  521. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  522. integer *, integer *, ftnlen, ftnlen), isamax_(integer *, real *,
  523. integer *);
  524. extern logical sisnan_(real *);
  525. integer kp1, lwkopt;
  526. logical lquery;
  527. integer jbf;
  528. real eps;
  529. integer iws, ioffset;
  530. /* -- LAPACK computational routine -- */
  531. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  532. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  533. /* ===================================================================== */
  534. /* Test input arguments */
  535. /* ==================== */
  536. /* Parameter adjustments */
  537. a_dim1 = *lda;
  538. a_offset = 1 + a_dim1 * 1;
  539. a -= a_offset;
  540. --jpiv;
  541. --tau;
  542. --work;
  543. --iwork;
  544. /* Function Body */
  545. *info = 0;
  546. lquery = *lwork == -1;
  547. if (*m < 0) {
  548. *info = -1;
  549. } else if (*n < 0) {
  550. *info = -2;
  551. } else if (*nrhs < 0) {
  552. *info = -3;
  553. } else if (*kmax < 0) {
  554. *info = -4;
  555. } else if (sisnan_(abstol)) {
  556. *info = -5;
  557. } else if (sisnan_(reltol)) {
  558. *info = -6;
  559. } else if (*lda < f2cmax(1,*m)) {
  560. *info = -8;
  561. }
  562. /* If the input parameters M, N, NRHS, KMAX, LDA are valid: */
  563. /* a) Test the input workspace size LWORK for the minimum */
  564. /* size requirement IWS. */
  565. /* b) Determine the optimal block size NB and optimal */
  566. /* workspace size LWKOPT to be returned in WORK(1) */
  567. /* in case of (1) LWORK < IWS, (2) LQUERY = .TRUE., */
  568. /* (3) when routine exits. */
  569. /* Here, IWS is the miminum workspace required for unblocked */
  570. /* code. */
  571. if (*info == 0) {
  572. minmn = f2cmin(*m,*n);
  573. if (minmn == 0) {
  574. iws = 1;
  575. lwkopt = 1;
  576. } else {
  577. /* Minimal workspace size in case of using only unblocked */
  578. /* BLAS 2 code in SLAQP2RK. */
  579. /* 1) SGEQP3RK and SLAQP2RK: 2*N to store full and partial */
  580. /* column 2-norms. */
  581. /* 2) SLAQP2RK: N+NRHS-1 to use in WORK array that is used */
  582. /* in SLARF subroutine inside SLAQP2RK to apply an */
  583. /* elementary reflector from the left. */
  584. /* TOTAL_WORK_SIZE = 3*N + NRHS - 1 */
  585. iws = *n * 3 + *nrhs - 1;
  586. /* Assign to NB optimal block size. */
  587. nb = ilaenv_(&c__1, "SGEQP3RK", " ", m, n, &c_n1, &c_n1, (ftnlen)
  588. 8, (ftnlen)1);
  589. /* A formula for the optimal workspace size in case of using */
  590. /* both unblocked BLAS 2 in SLAQP2RK and blocked BLAS 3 code */
  591. /* in SLAQP3RK. */
  592. /* 1) SGEQP3RK, SLAQP2RK, SLAQP3RK: 2*N to store full and */
  593. /* partial column 2-norms. */
  594. /* 2) SLAQP2RK: N+NRHS-1 to use in WORK array that is used */
  595. /* in SLARF subroutine to apply an elementary reflector */
  596. /* from the left. */
  597. /* 3) SLAQP3RK: NB*(N+NRHS) to use in the work array F that */
  598. /* is used to apply a block reflector from */
  599. /* the left. */
  600. /* 4) SLAQP3RK: NB to use in the auxilixary array AUX. */
  601. /* Sizes (2) and ((3) + (4)) should intersect, therefore */
  602. /* TOTAL_WORK_SIZE = 2*N + NB*( N+NRHS+1 ), given NBMIN=2. */
  603. lwkopt = (*n << 1) + nb * (*n + *nrhs + 1);
  604. }
  605. work[1] = (real) lwkopt;
  606. if (*lwork < iws && ! lquery) {
  607. *info = -15;
  608. }
  609. }
  610. /* NOTE: The optimal workspace size is returned in WORK(1), if */
  611. /* the input parameters M, N, NRHS, KMAX, LDA are valid. */
  612. if (*info != 0) {
  613. i__1 = -(*info);
  614. xerbla_("SGEQP3RK", &i__1);
  615. return 0;
  616. } else if (lquery) {
  617. return 0;
  618. }
  619. /* Quick return if possible for M=0 or N=0. */
  620. if (minmn == 0) {
  621. *k = 0;
  622. *maxc2nrmk = 0.f;
  623. *relmaxc2nrmk = 0.f;
  624. work[1] = (real) lwkopt;
  625. return 0;
  626. }
  627. /* ================================================================== */
  628. /* Initialize column pivot array JPIV. */
  629. i__1 = *n;
  630. for (j = 1; j <= i__1; ++j) {
  631. jpiv[j] = j;
  632. }
  633. /* ================================================================== */
  634. /* Initialize storage for partial and exact column 2-norms. */
  635. /* a) The elements WORK(1:N) are used to store partial column */
  636. /* 2-norms of the matrix A, and may decrease in each computation */
  637. /* step; initialize to the values of complete columns 2-norms. */
  638. /* b) The elements WORK(N+1:2*N) are used to store complete column */
  639. /* 2-norms of the matrix A, they are not changed during the */
  640. /* computation; initialize the values of complete columns 2-norms. */
  641. i__1 = *n;
  642. for (j = 1; j <= i__1; ++j) {
  643. work[j] = snrm2_(m, &a[j * a_dim1 + 1], &c__1);
  644. work[*n + j] = work[j];
  645. }
  646. /* ================================================================== */
  647. /* Compute the pivot column index and the maximum column 2-norm */
  648. /* for the whole original matrix stored in A(1:M,1:N). */
  649. kp1 = isamax_(n, &work[1], &c__1);
  650. maxc2nrm = work[kp1];
  651. /* ==================================================================. */
  652. if (sisnan_(&maxc2nrm)) {
  653. /* Check if the matrix A contains NaN, set INFO parameter */
  654. /* to the column number where the first NaN is found and return */
  655. /* from the routine. */
  656. *k = 0;
  657. *info = kp1;
  658. /* Set MAXC2NRMK and RELMAXC2NRMK to NaN. */
  659. *maxc2nrmk = maxc2nrm;
  660. *relmaxc2nrmk = maxc2nrm;
  661. /* Array TAU is not set and contains undefined elements. */
  662. work[1] = (real) lwkopt;
  663. return 0;
  664. }
  665. /* =================================================================== */
  666. if (maxc2nrm == 0.f) {
  667. /* Check is the matrix A is a zero matrix, set array TAU and */
  668. /* return from the routine. */
  669. *k = 0;
  670. *maxc2nrmk = 0.f;
  671. *relmaxc2nrmk = 0.f;
  672. i__1 = minmn;
  673. for (j = 1; j <= i__1; ++j) {
  674. tau[j] = 0.f;
  675. }
  676. work[1] = (real) lwkopt;
  677. return 0;
  678. }
  679. /* =================================================================== */
  680. myhugeval = slamch_("Overflow");
  681. if (maxc2nrm > myhugeval) {
  682. /* Check if the matrix A contains +Inf or -Inf, set INFO parameter */
  683. /* to the column number, where the first +/-Inf is found plus N, */
  684. /* and continue the computation. */
  685. *info = *n + kp1;
  686. }
  687. /* ================================================================== */
  688. /* Quick return if possible for the case when the first */
  689. /* stopping criterion is satisfied, i.e. KMAX = 0. */
  690. if (*kmax == 0) {
  691. *k = 0;
  692. *maxc2nrmk = maxc2nrm;
  693. *relmaxc2nrmk = 1.f;
  694. i__1 = minmn;
  695. for (j = 1; j <= i__1; ++j) {
  696. tau[j] = 0.f;
  697. }
  698. work[1] = (real) lwkopt;
  699. return 0;
  700. }
  701. /* ================================================================== */
  702. eps = slamch_("Epsilon");
  703. /* Adjust ABSTOL */
  704. if (*abstol >= 0.f) {
  705. safmin = slamch_("Safe minimum");
  706. /* Computing MAX */
  707. r__1 = *abstol, r__2 = safmin * 2.f;
  708. *abstol = f2cmax(r__1,r__2);
  709. }
  710. /* Adjust RELTOL */
  711. if (*reltol >= 0.f) {
  712. *reltol = f2cmax(*reltol,eps);
  713. }
  714. /* =================================================================== */
  715. /* JMAX is the maximum index of the column to be factorized, */
  716. /* which is also limited by the first stopping criterion KMAX. */
  717. jmax = f2cmin(*kmax,minmn);
  718. /* =================================================================== */
  719. /* Quick return if possible for the case when the second or third */
  720. /* stopping criterion for the whole original matrix is satified, */
  721. /* i.e. MAXC2NRM <= ABSTOL or RELMAXC2NRM <= RELTOL */
  722. /* (which is ONE <= RELTOL). */
  723. if (maxc2nrm <= *abstol || 1.f <= *reltol) {
  724. *k = 0;
  725. *maxc2nrmk = maxc2nrm;
  726. *relmaxc2nrmk = 1.f;
  727. i__1 = minmn;
  728. for (j = 1; j <= i__1; ++j) {
  729. tau[j] = 0.f;
  730. }
  731. work[1] = (real) lwkopt;
  732. return 0;
  733. }
  734. /* ================================================================== */
  735. /* Factorize columns */
  736. /* ================================================================== */
  737. /* Determine the block size. */
  738. nbmin = 2;
  739. nx = 0;
  740. if (nb > 1 && nb < minmn) {
  741. /* Determine when to cross over from blocked to unblocked code. */
  742. /* (for N less than NX, unblocked code should be used). */
  743. /* Computing MAX */
  744. i__1 = 0, i__2 = ilaenv_(&c__3, "SGEQP3RK", " ", m, n, &c_n1, &c_n1, (
  745. ftnlen)8, (ftnlen)1);
  746. nx = f2cmax(i__1,i__2);
  747. if (nx < minmn) {
  748. /* Determine if workspace is large enough for blocked code. */
  749. if (*lwork < lwkopt) {
  750. /* Not enough workspace to use optimal block size that */
  751. /* is currently stored in NB. */
  752. /* Reduce NB and determine the minimum value of NB. */
  753. nb = (*lwork - (*n << 1)) / (*n + 1);
  754. /* Computing MAX */
  755. i__1 = 2, i__2 = ilaenv_(&c__2, "SGEQP3RK", " ", m, n, &c_n1,
  756. &c_n1, (ftnlen)8, (ftnlen)1);
  757. nbmin = f2cmax(i__1,i__2);
  758. }
  759. }
  760. }
  761. /* ================================================================== */
  762. /* DONE is the boolean flag to rerpresent the case when the */
  763. /* factorization completed in the block factorization routine, */
  764. /* before the end of the block. */
  765. done = FALSE_;
  766. /* J is the column index. */
  767. j = 1;
  768. /* (1) Use blocked code initially. */
  769. /* JMAXB is the maximum column index of the block, when the */
  770. /* blocked code is used, is also limited by the first stopping */
  771. /* criterion KMAX. */
  772. /* Computing MIN */
  773. i__1 = *kmax, i__2 = minmn - nx;
  774. jmaxb = f2cmin(i__1,i__2);
  775. if (nb >= nbmin && nb < jmax && jmaxb > 0) {
  776. /* Loop over the column blocks of the matrix A(1:M,1:JMAXB). Here: */
  777. /* J is the column index of a column block; */
  778. /* JB is the column block size to pass to block factorization */
  779. /* routine in a loop step; */
  780. /* JBF is the number of columns that were actually factorized */
  781. /* that was returned by the block factorization routine */
  782. /* in a loop step, JBF <= JB; */
  783. /* N_SUB is the number of columns in the submatrix; */
  784. /* IOFFSET is the number of rows that should not be factorized. */
  785. while(j <= jmaxb) {
  786. /* Computing MIN */
  787. i__1 = nb, i__2 = jmaxb - j + 1;
  788. jb = f2cmin(i__1,i__2);
  789. n_sub__ = *n - j + 1;
  790. ioffset = j - 1;
  791. /* Factorize JB columns among the columns A(J:N). */
  792. i__1 = *n + *nrhs - j + 1;
  793. slaqp3rk_(m, &n_sub__, nrhs, &ioffset, &jb, abstol, reltol, &kp1,
  794. &maxc2nrm, &a[j * a_dim1 + 1], lda, &done, &jbf,
  795. maxc2nrmk, relmaxc2nrmk, &jpiv[j], &tau[j], &work[j], &
  796. work[*n + j], &work[(*n << 1) + 1], &work[(*n << 1) + jb
  797. + 1], &i__1, &iwork[1], &iinfo);
  798. /* Set INFO on the first occurence of Inf. */
  799. if (iinfo > n_sub__ && *info == 0) {
  800. *info = (ioffset << 1) + iinfo;
  801. }
  802. if (done) {
  803. /* Either the submatrix is zero before the end of the */
  804. /* column block, or ABSTOL or RELTOL criterion is */
  805. /* satisfied before the end of the column block, we can */
  806. /* return from the routine. Perform the following before */
  807. /* returning: */
  808. /* a) Set the number of factorized columns K, */
  809. /* K = IOFFSET + JBF from the last call of blocked */
  810. /* routine. */
  811. /* NOTE: 1) MAXC2NRMK and RELMAXC2NRMK are returned */
  812. /* by the block factorization routine; */
  813. /* 2) The remaining TAUs are set to ZERO by the */
  814. /* block factorization routine. */
  815. *k = ioffset + jbf;
  816. /* Set INFO on the first occurrence of NaN, NaN takes */
  817. /* prcedence over Inf. */
  818. if (iinfo <= n_sub__ && iinfo > 0) {
  819. *info = ioffset + iinfo;
  820. }
  821. /* Return from the routine. */
  822. work[1] = (real) lwkopt;
  823. return 0;
  824. }
  825. j += jbf;
  826. }
  827. }
  828. /* Use unblocked code to factor the last or only block. */
  829. /* J = JMAX+1 means we factorized the maximum possible number of */
  830. /* columns, that is in ELSE clause we need to compute */
  831. /* the MAXC2NORM and RELMAXC2NORM to return after we processed */
  832. /* the blocks. */
  833. if (j <= jmax) {
  834. /* N_SUB is the number of columns in the submatrix; */
  835. /* IOFFSET is the number of rows that should not be factorized. */
  836. n_sub__ = *n - j + 1;
  837. ioffset = j - 1;
  838. i__1 = jmax - j + 1;
  839. slaqp2rk_(m, &n_sub__, nrhs, &ioffset, &i__1, abstol, reltol, &kp1, &
  840. maxc2nrm, &a[j * a_dim1 + 1], lda, &kf, maxc2nrmk,
  841. relmaxc2nrmk, &jpiv[j], &tau[j], &work[j], &work[*n + j], &
  842. work[(*n << 1) + 1], &iinfo);
  843. /* ABSTOL or RELTOL criterion is satisfied when the number of */
  844. /* the factorized columns KF is smaller then the number */
  845. /* of columns JMAX-J+1 supplied to be factorized by the */
  846. /* unblocked routine, we can return from */
  847. /* the routine. Perform the following before returning: */
  848. /* a) Set the number of factorized columns K, */
  849. /* b) MAXC2NRMK and RELMAXC2NRMK are returned by the */
  850. /* unblocked factorization routine above. */
  851. *k = j - 1 + kf;
  852. /* Set INFO on the first exception occurence. */
  853. /* Set INFO on the first exception occurence of Inf or NaN, */
  854. /* (NaN takes precedence over Inf). */
  855. if (iinfo > n_sub__ && *info == 0) {
  856. *info = (ioffset << 1) + iinfo;
  857. } else if (iinfo <= n_sub__ && iinfo > 0) {
  858. *info = ioffset + iinfo;
  859. }
  860. } else {
  861. /* Compute the return values for blocked code. */
  862. /* Set the number of factorized columns if the unblocked routine */
  863. /* was not called. */
  864. *k = jmax;
  865. /* If there exits a residual matrix after the blocked code: */
  866. /* 1) compute the values of MAXC2NRMK, RELMAXC2NRMK of the */
  867. /* residual matrix, otherwise set them to ZERO; */
  868. /* 2) Set TAU(K+1:MINMN) to ZERO. */
  869. if (*k < minmn) {
  870. i__1 = *n - *k;
  871. jmaxc2nrm = *k + isamax_(&i__1, &work[*k + 1], &c__1);
  872. *maxc2nrmk = work[jmaxc2nrm];
  873. if (*k == 0) {
  874. *relmaxc2nrmk = 1.f;
  875. } else {
  876. *relmaxc2nrmk = *maxc2nrmk / maxc2nrm;
  877. }
  878. i__1 = minmn;
  879. for (j = *k + 1; j <= i__1; ++j) {
  880. tau[j] = 0.f;
  881. }
  882. }
  883. /* END IF( J.LE.JMAX ) THEN */
  884. }
  885. work[1] = (real) lwkopt;
  886. return 0;
  887. /* End of SGEQP3RK */
  888. } /* sgeqp3rk_ */