You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zsytrf_rook.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390
  1. *> \brief \b ZSYTRF_ROOK
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZSYTRF_ROOK + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytrf_rook.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytrf_rook.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytrf_rook.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZSYTRF_ROOK( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, LWORK, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX*16 A( LDA, * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZSYTRF_ROOK computes the factorization of a complex symmetric matrix A
  39. *> using the bounded Bunch-Kaufman ("rook") diagonal pivoting method.
  40. *> The form of the factorization is
  41. *>
  42. *> A = U*D*U**T or A = L*D*L**T
  43. *>
  44. *> where U (or L) is a product of permutation and unit upper (lower)
  45. *> triangular matrices, and D is symmetric and block diagonal with
  46. *> 1-by-1 and 2-by-2 diagonal blocks.
  47. *>
  48. *> This is the blocked version of the algorithm, calling Level 3 BLAS.
  49. *> \endverbatim
  50. *
  51. * Arguments:
  52. * ==========
  53. *
  54. *> \param[in] UPLO
  55. *> \verbatim
  56. *> UPLO is CHARACTER*1
  57. *> = 'U': Upper triangle of A is stored;
  58. *> = 'L': Lower triangle of A is stored.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] N
  62. *> \verbatim
  63. *> N is INTEGER
  64. *> The order of the matrix A. N >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in,out] A
  68. *> \verbatim
  69. *> A is COMPLEX*16 array, dimension (LDA,N)
  70. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  71. *> N-by-N upper triangular part of A contains the upper
  72. *> triangular part of the matrix A, and the strictly lower
  73. *> triangular part of A is not referenced. If UPLO = 'L', the
  74. *> leading N-by-N lower triangular part of A contains the lower
  75. *> triangular part of the matrix A, and the strictly upper
  76. *> triangular part of A is not referenced.
  77. *>
  78. *> On exit, the block diagonal matrix D and the multipliers used
  79. *> to obtain the factor U or L (see below for further details).
  80. *> \endverbatim
  81. *>
  82. *> \param[in] LDA
  83. *> \verbatim
  84. *> LDA is INTEGER
  85. *> The leading dimension of the array A. LDA >= max(1,N).
  86. *> \endverbatim
  87. *>
  88. *> \param[out] IPIV
  89. *> \verbatim
  90. *> IPIV is INTEGER array, dimension (N)
  91. *> Details of the interchanges and the block structure of D.
  92. *>
  93. *> If UPLO = 'U':
  94. *> If IPIV(k) > 0, then rows and columns k and IPIV(k)
  95. *> were interchanged and D(k,k) is a 1-by-1 diagonal block.
  96. *>
  97. *> If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
  98. *> columns k and -IPIV(k) were interchanged and rows and
  99. *> columns k-1 and -IPIV(k-1) were inerchaged,
  100. *> D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
  101. *>
  102. *> If UPLO = 'L':
  103. *> If IPIV(k) > 0, then rows and columns k and IPIV(k)
  104. *> were interchanged and D(k,k) is a 1-by-1 diagonal block.
  105. *>
  106. *> If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
  107. *> columns k and -IPIV(k) were interchanged and rows and
  108. *> columns k+1 and -IPIV(k+1) were inerchaged,
  109. *> D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  110. *> \endverbatim
  111. *>
  112. *> \param[out] WORK
  113. *> \verbatim
  114. *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)).
  115. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  116. *> \endverbatim
  117. *>
  118. *> \param[in] LWORK
  119. *> \verbatim
  120. *> LWORK is INTEGER
  121. *> The length of WORK. LWORK >=1. For best performance
  122. *> LWORK >= N*NB, where NB is the block size returned by ILAENV.
  123. *>
  124. *> If LWORK = -1, then a workspace query is assumed; the routine
  125. *> only calculates the optimal size of the WORK array, returns
  126. *> this value as the first entry of the WORK array, and no error
  127. *> message related to LWORK is issued by XERBLA.
  128. *> \endverbatim
  129. *>
  130. *> \param[out] INFO
  131. *> \verbatim
  132. *> INFO is INTEGER
  133. *> = 0: successful exit
  134. *> < 0: if INFO = -i, the i-th argument had an illegal value
  135. *> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
  136. *> has been completed, but the block diagonal matrix D is
  137. *> exactly singular, and division by zero will occur if it
  138. *> is used to solve a system of equations.
  139. *> \endverbatim
  140. *
  141. * Authors:
  142. * ========
  143. *
  144. *> \author Univ. of Tennessee
  145. *> \author Univ. of California Berkeley
  146. *> \author Univ. of Colorado Denver
  147. *> \author NAG Ltd.
  148. *
  149. *> \ingroup complex16SYcomputational
  150. *
  151. *> \par Further Details:
  152. * =====================
  153. *>
  154. *> \verbatim
  155. *>
  156. *> If UPLO = 'U', then A = U*D*U**T, where
  157. *> U = P(n)*U(n)* ... *P(k)U(k)* ...,
  158. *> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  159. *> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  160. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  161. *> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  162. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  163. *>
  164. *> ( I v 0 ) k-s
  165. *> U(k) = ( 0 I 0 ) s
  166. *> ( 0 0 I ) n-k
  167. *> k-s s n-k
  168. *>
  169. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  170. *> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  171. *> and A(k,k), and v overwrites A(1:k-2,k-1:k).
  172. *>
  173. *> If UPLO = 'L', then A = L*D*L**T, where
  174. *> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  175. *> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  176. *> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  177. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  178. *> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  179. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  180. *>
  181. *> ( I 0 0 ) k-1
  182. *> L(k) = ( 0 I 0 ) s
  183. *> ( 0 v I ) n-k-s+1
  184. *> k-1 s n-k-s+1
  185. *>
  186. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  187. *> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  188. *> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  189. *> \endverbatim
  190. *
  191. *> \par Contributors:
  192. * ==================
  193. *>
  194. *> \verbatim
  195. *>
  196. *> June 2016, Igor Kozachenko,
  197. *> Computer Science Division,
  198. *> University of California, Berkeley
  199. *>
  200. *> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  201. *> School of Mathematics,
  202. *> University of Manchester
  203. *>
  204. *> \endverbatim
  205. *
  206. * =====================================================================
  207. SUBROUTINE ZSYTRF_ROOK( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
  208. *
  209. * -- LAPACK computational routine --
  210. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  211. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  212. *
  213. * .. Scalar Arguments ..
  214. CHARACTER UPLO
  215. INTEGER INFO, LDA, LWORK, N
  216. * ..
  217. * .. Array Arguments ..
  218. INTEGER IPIV( * )
  219. COMPLEX*16 A( LDA, * ), WORK( * )
  220. * ..
  221. *
  222. * =====================================================================
  223. *
  224. * .. Local Scalars ..
  225. LOGICAL LQUERY, UPPER
  226. INTEGER IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
  227. * ..
  228. * .. External Functions ..
  229. LOGICAL LSAME
  230. INTEGER ILAENV
  231. EXTERNAL LSAME, ILAENV
  232. * ..
  233. * .. External Subroutines ..
  234. EXTERNAL ZLASYF_ROOK, ZSYTF2_ROOK, XERBLA
  235. * ..
  236. * .. Intrinsic Functions ..
  237. INTRINSIC MAX
  238. * ..
  239. * .. Executable Statements ..
  240. *
  241. * Test the input parameters.
  242. *
  243. INFO = 0
  244. UPPER = LSAME( UPLO, 'U' )
  245. LQUERY = ( LWORK.EQ.-1 )
  246. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  247. INFO = -1
  248. ELSE IF( N.LT.0 ) THEN
  249. INFO = -2
  250. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  251. INFO = -4
  252. ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
  253. INFO = -7
  254. END IF
  255. *
  256. IF( INFO.EQ.0 ) THEN
  257. *
  258. * Determine the block size
  259. *
  260. NB = ILAENV( 1, 'ZSYTRF_ROOK', UPLO, N, -1, -1, -1 )
  261. LWKOPT = MAX( 1, N*NB )
  262. WORK( 1 ) = LWKOPT
  263. END IF
  264. *
  265. IF( INFO.NE.0 ) THEN
  266. CALL XERBLA( 'ZSYTRF_ROOK', -INFO )
  267. RETURN
  268. ELSE IF( LQUERY ) THEN
  269. RETURN
  270. END IF
  271. *
  272. NBMIN = 2
  273. LDWORK = N
  274. IF( NB.GT.1 .AND. NB.LT.N ) THEN
  275. IWS = LDWORK*NB
  276. IF( LWORK.LT.IWS ) THEN
  277. NB = MAX( LWORK / LDWORK, 1 )
  278. NBMIN = MAX( 2, ILAENV( 2, 'ZSYTRF_ROOK',
  279. $ UPLO, N, -1, -1, -1 ) )
  280. END IF
  281. ELSE
  282. IWS = 1
  283. END IF
  284. IF( NB.LT.NBMIN )
  285. $ NB = N
  286. *
  287. IF( UPPER ) THEN
  288. *
  289. * Factorize A as U*D*U**T using the upper triangle of A
  290. *
  291. * K is the main loop index, decreasing from N to 1 in steps of
  292. * KB, where KB is the number of columns factorized by ZLASYF_ROOK;
  293. * KB is either NB or NB-1, or K for the last block
  294. *
  295. K = N
  296. 10 CONTINUE
  297. *
  298. * If K < 1, exit from loop
  299. *
  300. IF( K.LT.1 )
  301. $ GO TO 40
  302. *
  303. IF( K.GT.NB ) THEN
  304. *
  305. * Factorize columns k-kb+1:k of A and use blocked code to
  306. * update columns 1:k-kb
  307. *
  308. CALL ZLASYF_ROOK( UPLO, K, NB, KB, A, LDA,
  309. $ IPIV, WORK, LDWORK, IINFO )
  310. ELSE
  311. *
  312. * Use unblocked code to factorize columns 1:k of A
  313. *
  314. CALL ZSYTF2_ROOK( UPLO, K, A, LDA, IPIV, IINFO )
  315. KB = K
  316. END IF
  317. *
  318. * Set INFO on the first occurrence of a zero pivot
  319. *
  320. IF( INFO.EQ.0 .AND. IINFO.GT.0 )
  321. $ INFO = IINFO
  322. *
  323. * No need to adjust IPIV
  324. *
  325. * Decrease K and return to the start of the main loop
  326. *
  327. K = K - KB
  328. GO TO 10
  329. *
  330. ELSE
  331. *
  332. * Factorize A as L*D*L**T using the lower triangle of A
  333. *
  334. * K is the main loop index, increasing from 1 to N in steps of
  335. * KB, where KB is the number of columns factorized by ZLASYF_ROOK;
  336. * KB is either NB or NB-1, or N-K+1 for the last block
  337. *
  338. K = 1
  339. 20 CONTINUE
  340. *
  341. * If K > N, exit from loop
  342. *
  343. IF( K.GT.N )
  344. $ GO TO 40
  345. *
  346. IF( K.LE.N-NB ) THEN
  347. *
  348. * Factorize columns k:k+kb-1 of A and use blocked code to
  349. * update columns k+kb:n
  350. *
  351. CALL ZLASYF_ROOK( UPLO, N-K+1, NB, KB, A( K, K ), LDA,
  352. $ IPIV( K ), WORK, LDWORK, IINFO )
  353. ELSE
  354. *
  355. * Use unblocked code to factorize columns k:n of A
  356. *
  357. CALL ZSYTF2_ROOK( UPLO, N-K+1, A( K, K ), LDA, IPIV( K ),
  358. $ IINFO )
  359. KB = N - K + 1
  360. END IF
  361. *
  362. * Set INFO on the first occurrence of a zero pivot
  363. *
  364. IF( INFO.EQ.0 .AND. IINFO.GT.0 )
  365. $ INFO = IINFO + K - 1
  366. *
  367. * Adjust IPIV
  368. *
  369. DO 30 J = K, K + KB - 1
  370. IF( IPIV( J ).GT.0 ) THEN
  371. IPIV( J ) = IPIV( J ) + K - 1
  372. ELSE
  373. IPIV( J ) = IPIV( J ) - K + 1
  374. END IF
  375. 30 CONTINUE
  376. *
  377. * Increase K and return to the start of the main loop
  378. *
  379. K = K + KB
  380. GO TO 20
  381. *
  382. END IF
  383. *
  384. 40 CONTINUE
  385. WORK( 1 ) = LWKOPT
  386. RETURN
  387. *
  388. * End of ZSYTRF_ROOK
  389. *
  390. END