You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dpotrf.f 7.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243
  1. *> \brief \b DPOTRF
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DPOTRF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpotrf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpotrf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpotrf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DPOTRF( UPLO, N, A, LDA, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION A( LDA, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DPOTRF computes the Cholesky factorization of a real symmetric
  38. *> positive definite matrix A.
  39. *>
  40. *> The factorization has the form
  41. *> A = U**T * U, if UPLO = 'U', or
  42. *> A = L * L**T, if UPLO = 'L',
  43. *> where U is an upper triangular matrix and L is lower triangular.
  44. *>
  45. *> This is the block version of the algorithm, calling Level 3 BLAS.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> = 'U': Upper triangle of A is stored;
  55. *> = 'L': Lower triangle of A is stored.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in,out] A
  65. *> \verbatim
  66. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  67. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  68. *> N-by-N upper triangular part of A contains the upper
  69. *> triangular part of the matrix A, and the strictly lower
  70. *> triangular part of A is not referenced. If UPLO = 'L', the
  71. *> leading N-by-N lower triangular part of A contains the lower
  72. *> triangular part of the matrix A, and the strictly upper
  73. *> triangular part of A is not referenced.
  74. *>
  75. *> On exit, if INFO = 0, the factor U or L from the Cholesky
  76. *> factorization A = U**T*U or A = L*L**T.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] LDA
  80. *> \verbatim
  81. *> LDA is INTEGER
  82. *> The leading dimension of the array A. LDA >= max(1,N).
  83. *> \endverbatim
  84. *>
  85. *> \param[out] INFO
  86. *> \verbatim
  87. *> INFO is INTEGER
  88. *> = 0: successful exit
  89. *> < 0: if INFO = -i, the i-th argument had an illegal value
  90. *> > 0: if INFO = i, the leading principal minor of order i
  91. *> is not positive, and the factorization could not be
  92. *> completed.
  93. *> \endverbatim
  94. *
  95. * Authors:
  96. * ========
  97. *
  98. *> \author Univ. of Tennessee
  99. *> \author Univ. of California Berkeley
  100. *> \author Univ. of Colorado Denver
  101. *> \author NAG Ltd.
  102. *
  103. *> \ingroup doublePOcomputational
  104. *
  105. * =====================================================================
  106. SUBROUTINE DPOTRF( UPLO, N, A, LDA, INFO )
  107. *
  108. * -- LAPACK computational routine --
  109. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  110. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  111. *
  112. * .. Scalar Arguments ..
  113. CHARACTER UPLO
  114. INTEGER INFO, LDA, N
  115. * ..
  116. * .. Array Arguments ..
  117. DOUBLE PRECISION A( LDA, * )
  118. * ..
  119. *
  120. * =====================================================================
  121. *
  122. * .. Parameters ..
  123. DOUBLE PRECISION ONE
  124. PARAMETER ( ONE = 1.0D+0 )
  125. * ..
  126. * .. Local Scalars ..
  127. LOGICAL UPPER
  128. INTEGER J, JB, NB
  129. * ..
  130. * .. External Functions ..
  131. LOGICAL LSAME
  132. INTEGER ILAENV
  133. EXTERNAL LSAME, ILAENV
  134. * ..
  135. * .. External Subroutines ..
  136. EXTERNAL DGEMM, DPOTRF2, DSYRK, DTRSM, XERBLA
  137. * ..
  138. * .. Intrinsic Functions ..
  139. INTRINSIC MAX, MIN
  140. * ..
  141. * .. Executable Statements ..
  142. *
  143. * Test the input parameters.
  144. *
  145. INFO = 0
  146. UPPER = LSAME( UPLO, 'U' )
  147. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  148. INFO = -1
  149. ELSE IF( N.LT.0 ) THEN
  150. INFO = -2
  151. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  152. INFO = -4
  153. END IF
  154. IF( INFO.NE.0 ) THEN
  155. CALL XERBLA( 'DPOTRF', -INFO )
  156. RETURN
  157. END IF
  158. *
  159. * Quick return if possible
  160. *
  161. IF( N.EQ.0 )
  162. $ RETURN
  163. *
  164. * Determine the block size for this environment.
  165. *
  166. NB = ILAENV( 1, 'DPOTRF', UPLO, N, -1, -1, -1 )
  167. IF( NB.LE.1 .OR. NB.GE.N ) THEN
  168. *
  169. * Use unblocked code.
  170. *
  171. CALL DPOTRF2( UPLO, N, A, LDA, INFO )
  172. ELSE
  173. *
  174. * Use blocked code.
  175. *
  176. IF( UPPER ) THEN
  177. *
  178. * Compute the Cholesky factorization A = U**T*U.
  179. *
  180. DO 10 J = 1, N, NB
  181. *
  182. * Update and factorize the current diagonal block and test
  183. * for non-positive-definiteness.
  184. *
  185. JB = MIN( NB, N-J+1 )
  186. CALL DSYRK( 'Upper', 'Transpose', JB, J-1, -ONE,
  187. $ A( 1, J ), LDA, ONE, A( J, J ), LDA )
  188. CALL DPOTRF2( 'Upper', JB, A( J, J ), LDA, INFO )
  189. IF( INFO.NE.0 )
  190. $ GO TO 30
  191. IF( J+JB.LE.N ) THEN
  192. *
  193. * Compute the current block row.
  194. *
  195. CALL DGEMM( 'Transpose', 'No transpose', JB, N-J-JB+1,
  196. $ J-1, -ONE, A( 1, J ), LDA, A( 1, J+JB ),
  197. $ LDA, ONE, A( J, J+JB ), LDA )
  198. CALL DTRSM( 'Left', 'Upper', 'Transpose', 'Non-unit',
  199. $ JB, N-J-JB+1, ONE, A( J, J ), LDA,
  200. $ A( J, J+JB ), LDA )
  201. END IF
  202. 10 CONTINUE
  203. *
  204. ELSE
  205. *
  206. * Compute the Cholesky factorization A = L*L**T.
  207. *
  208. DO 20 J = 1, N, NB
  209. *
  210. * Update and factorize the current diagonal block and test
  211. * for non-positive-definiteness.
  212. *
  213. JB = MIN( NB, N-J+1 )
  214. CALL DSYRK( 'Lower', 'No transpose', JB, J-1, -ONE,
  215. $ A( J, 1 ), LDA, ONE, A( J, J ), LDA )
  216. CALL DPOTRF2( 'Lower', JB, A( J, J ), LDA, INFO )
  217. IF( INFO.NE.0 )
  218. $ GO TO 30
  219. IF( J+JB.LE.N ) THEN
  220. *
  221. * Compute the current block column.
  222. *
  223. CALL DGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
  224. $ J-1, -ONE, A( J+JB, 1 ), LDA, A( J, 1 ),
  225. $ LDA, ONE, A( J+JB, J ), LDA )
  226. CALL DTRSM( 'Right', 'Lower', 'Transpose', 'Non-unit',
  227. $ N-J-JB+1, JB, ONE, A( J, J ), LDA,
  228. $ A( J+JB, J ), LDA )
  229. END IF
  230. 20 CONTINUE
  231. END IF
  232. END IF
  233. GO TO 40
  234. *
  235. 30 CONTINUE
  236. INFO = INFO + J - 1
  237. *
  238. 40 CONTINUE
  239. RETURN
  240. *
  241. * End of DPOTRF
  242. *
  243. END