You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgeqp3rk.c 30 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle_() continue;
  235. #define myceiling_(w) {ceil(w)}
  236. #define myhuge_(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* -- translated by f2c (version 20000121).
  486. You must link the resulting object file with the libraries:
  487. -lf2c -lm (in that order)
  488. */
  489. /* Table of constant values */
  490. static integer c__1 = 1;
  491. static integer c_n1 = -1;
  492. static integer c__3 = 3;
  493. static integer c__2 = 2;
  494. /* Subroutine */ int dgeqp3rk_(integer *m, integer *n, integer *nrhs, integer
  495. *kmax, doublereal *abstol, doublereal *reltol, doublereal *a, integer
  496. *lda, integer *k, doublereal *maxc2nrmk, doublereal *relmaxc2nrmk,
  497. integer *jpiv, doublereal *tau, doublereal *work, integer *lwork,
  498. integer *iwork, integer *info)
  499. {
  500. /* System generated locals */
  501. integer a_dim1, a_offset, i__1, i__2;
  502. doublereal d__1, d__2;
  503. /* Local variables */
  504. extern /* Subroutine */ int dlaqp2rk_(integer *, integer *, integer *,
  505. integer *, integer *, doublereal *, doublereal *, integer *,
  506. doublereal *, doublereal *, integer *, integer *, doublereal *,
  507. doublereal *, integer *, doublereal *, doublereal *, doublereal *,
  508. doublereal *, integer *), dlaqp3rk_(integer *, integer *,
  509. integer *, integer *, integer *, doublereal *, doublereal *,
  510. integer *, doublereal *, doublereal *, integer *, logical *,
  511. integer *, doublereal *, doublereal *, integer *, doublereal *,
  512. doublereal *, doublereal *, doublereal *, doublereal *, integer *,
  513. integer *, integer *);
  514. doublereal maxc2nrm;
  515. logical done;
  516. integer jmax;
  517. extern doublereal dnrm2_(integer *, doublereal *, integer *);
  518. integer j, jmaxc2nrm, jmaxb, nbmin, iinfo, n_sub__, minmn;
  519. doublereal myhugeval;
  520. integer jb, nb, kf;
  521. extern doublereal dlamch_(char *);
  522. extern integer idamax_(integer *, doublereal *, integer *);
  523. integer nx;
  524. doublereal safmin;
  525. extern /* Subroutine */ int xerbla_(char *, integer *);
  526. extern logical disnan_(doublereal *);
  527. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  528. integer *, integer *, ftnlen, ftnlen);
  529. integer kp1, lwkopt;
  530. logical lquery;
  531. integer jbf;
  532. doublereal eps;
  533. integer iws, ioffset;
  534. /* -- LAPACK computational routine -- */
  535. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  536. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  537. /* ===================================================================== */
  538. /* Test input arguments */
  539. /* ==================== */
  540. /* Parameter adjustments */
  541. a_dim1 = *lda;
  542. a_offset = 1 + a_dim1 * 1;
  543. a -= a_offset;
  544. --jpiv;
  545. --tau;
  546. --work;
  547. --iwork;
  548. /* Function Body */
  549. *info = 0;
  550. lquery = *lwork == -1;
  551. if (*m < 0) {
  552. *info = -1;
  553. } else if (*n < 0) {
  554. *info = -2;
  555. } else if (*nrhs < 0) {
  556. *info = -3;
  557. } else if (*kmax < 0) {
  558. *info = -4;
  559. } else if (disnan_(abstol)) {
  560. *info = -5;
  561. } else if (disnan_(reltol)) {
  562. *info = -6;
  563. } else if (*lda < f2cmax(1,*m)) {
  564. *info = -8;
  565. }
  566. /* If the input parameters M, N, NRHS, KMAX, LDA are valid: */
  567. /* a) Test the input workspace size LWORK for the minimum */
  568. /* size requirement IWS. */
  569. /* b) Determine the optimal block size NB and optimal */
  570. /* workspace size LWKOPT to be returned in WORK(1) */
  571. /* in case of (1) LWORK < IWS, (2) LQUERY = .TRUE., */
  572. /* (3) when routine exits. */
  573. /* Here, IWS is the miminum workspace required for unblocked */
  574. /* code. */
  575. if (*info == 0) {
  576. minmn = f2cmin(*m,*n);
  577. if (minmn == 0) {
  578. iws = 1;
  579. lwkopt = 1;
  580. } else {
  581. /* Minimal workspace size in case of using only unblocked */
  582. /* BLAS 2 code in DLAQP2RK. */
  583. /* 1) DGEQP3RK and DLAQP2RK: 2*N to store full and partial */
  584. /* column 2-norms. */
  585. /* 2) DLAQP2RK: N+NRHS-1 to use in WORK array that is used */
  586. /* in DLARF subroutine inside DLAQP2RK to apply an */
  587. /* elementary reflector from the left. */
  588. /* TOTAL_WORK_SIZE = 3*N + NRHS - 1 */
  589. iws = *n * 3 + *nrhs - 1;
  590. /* Assign to NB optimal block size. */
  591. nb = ilaenv_(&c__1, "DGEQP3RK", " ", m, n, &c_n1, &c_n1, (ftnlen)
  592. 8, (ftnlen)1);
  593. /* A formula for the optimal workspace size in case of using */
  594. /* both unblocked BLAS 2 in DLAQP2RK and blocked BLAS 3 code */
  595. /* in DLAQP3RK. */
  596. /* 1) DGEQP3RK, DLAQP2RK, DLAQP3RK: 2*N to store full and */
  597. /* partial column 2-norms. */
  598. /* 2) DLAQP2RK: N+NRHS-1 to use in WORK array that is used */
  599. /* in DLARF subroutine to apply an elementary reflector */
  600. /* from the left. */
  601. /* 3) DLAQP3RK: NB*(N+NRHS) to use in the work array F that */
  602. /* is used to apply a block reflector from */
  603. /* the left. */
  604. /* 4) DLAQP3RK: NB to use in the auxilixary array AUX. */
  605. /* Sizes (2) and ((3) + (4)) should intersect, therefore */
  606. /* TOTAL_WORK_SIZE = 2*N + NB*( N+NRHS+1 ), given NBMIN=2. */
  607. lwkopt = (*n << 1) + nb * (*n + *nrhs + 1);
  608. }
  609. work[1] = (doublereal) lwkopt;
  610. if (*lwork < iws && ! lquery) {
  611. *info = -15;
  612. }
  613. }
  614. /* NOTE: The optimal workspace size is returned in WORK(1), if */
  615. /* the input parameters M, N, NRHS, KMAX, LDA are valid. */
  616. if (*info != 0) {
  617. i__1 = -(*info);
  618. xerbla_("DGEQP3RK", &i__1);
  619. return 0;
  620. } else if (lquery) {
  621. return 0;
  622. }
  623. /* Quick return if possible for M=0 or N=0. */
  624. if (minmn == 0) {
  625. *k = 0;
  626. *maxc2nrmk = 0.;
  627. *relmaxc2nrmk = 0.;
  628. work[1] = (doublereal) lwkopt;
  629. return 0;
  630. }
  631. /* ================================================================== */
  632. /* Initialize column pivot array JPIV. */
  633. i__1 = *n;
  634. for (j = 1; j <= i__1; ++j) {
  635. jpiv[j] = j;
  636. }
  637. /* ================================================================== */
  638. /* Initialize storage for partial and exact column 2-norms. */
  639. /* a) The elements WORK(1:N) are used to store partial column */
  640. /* 2-norms of the matrix A, and may decrease in each computation */
  641. /* step; initialize to the values of complete columns 2-norms. */
  642. /* b) The elements WORK(N+1:2*N) are used to store complete column */
  643. /* 2-norms of the matrix A, they are not changed during the */
  644. /* computation; initialize the values of complete columns 2-norms. */
  645. i__1 = *n;
  646. for (j = 1; j <= i__1; ++j) {
  647. work[j] = dnrm2_(m, &a[j * a_dim1 + 1], &c__1);
  648. work[*n + j] = work[j];
  649. }
  650. /* ================================================================== */
  651. /* Compute the pivot column index and the maximum column 2-norm */
  652. /* for the whole original matrix stored in A(1:M,1:N). */
  653. kp1 = idamax_(n, &work[1], &c__1);
  654. maxc2nrm = work[kp1];
  655. /* ==================================================================. */
  656. if (disnan_(&maxc2nrm)) {
  657. /* Check if the matrix A contains NaN, set INFO parameter */
  658. /* to the column number where the first NaN is found and return */
  659. /* from the routine. */
  660. *k = 0;
  661. *info = kp1;
  662. /* Set MAXC2NRMK and RELMAXC2NRMK to NaN. */
  663. *maxc2nrmk = maxc2nrm;
  664. *relmaxc2nrmk = maxc2nrm;
  665. /* Array TAU is not set and contains undefined elements. */
  666. work[1] = (doublereal) lwkopt;
  667. return 0;
  668. }
  669. /* =================================================================== */
  670. if (maxc2nrm == 0.) {
  671. /* Check is the matrix A is a zero matrix, set array TAU and */
  672. /* return from the routine. */
  673. *k = 0;
  674. *maxc2nrmk = 0.;
  675. *relmaxc2nrmk = 0.;
  676. i__1 = minmn;
  677. for (j = 1; j <= i__1; ++j) {
  678. tau[j] = 0.;
  679. }
  680. work[1] = (doublereal) lwkopt;
  681. return 0;
  682. }
  683. /* =================================================================== */
  684. myhugeval = dlamch_("Overflow");
  685. if (maxc2nrm > myhugeval) {
  686. /* Check if the matrix A contains +Inf or -Inf, set INFO parameter */
  687. /* to the column number, where the first +/-Inf is found plus N, */
  688. /* and continue the computation. */
  689. *info = *n + kp1;
  690. }
  691. /* ================================================================== */
  692. /* Quick return if possible for the case when the first */
  693. /* stopping criterion is satisfied, i.e. KMAX = 0. */
  694. if (*kmax == 0) {
  695. *k = 0;
  696. *maxc2nrmk = maxc2nrm;
  697. *relmaxc2nrmk = 1.;
  698. i__1 = minmn;
  699. for (j = 1; j <= i__1; ++j) {
  700. tau[j] = 0.;
  701. }
  702. work[1] = (doublereal) lwkopt;
  703. return 0;
  704. }
  705. /* ================================================================== */
  706. eps = dlamch_("Epsilon");
  707. /* Adjust ABSTOL */
  708. if (*abstol >= 0.) {
  709. safmin = dlamch_("Safe minimum");
  710. /* Computing MAX */
  711. d__1 = *abstol, d__2 = safmin * 2.;
  712. *abstol = f2cmax(d__1,d__2);
  713. }
  714. /* Adjust RELTOL */
  715. if (*reltol >= 0.) {
  716. *reltol = f2cmax(*reltol,eps);
  717. }
  718. /* =================================================================== */
  719. /* JMAX is the maximum index of the column to be factorized, */
  720. /* which is also limited by the first stopping criterion KMAX. */
  721. jmax = f2cmin(*kmax,minmn);
  722. /* =================================================================== */
  723. /* Quick return if possible for the case when the second or third */
  724. /* stopping criterion for the whole original matrix is satified, */
  725. /* i.e. MAXC2NRM <= ABSTOL or RELMAXC2NRM <= RELTOL */
  726. /* (which is ONE <= RELTOL). */
  727. if (maxc2nrm <= *abstol || 1. <= *reltol) {
  728. *k = 0;
  729. *maxc2nrmk = maxc2nrm;
  730. *relmaxc2nrmk = 1.;
  731. i__1 = minmn;
  732. for (j = 1; j <= i__1; ++j) {
  733. tau[j] = 0.;
  734. }
  735. work[1] = (doublereal) lwkopt;
  736. return 0;
  737. }
  738. /* ================================================================== */
  739. /* Factorize columns */
  740. /* ================================================================== */
  741. /* Determine the block size. */
  742. nbmin = 2;
  743. nx = 0;
  744. if (nb > 1 && nb < minmn) {
  745. /* Determine when to cross over from blocked to unblocked code. */
  746. /* (for N less than NX, unblocked code should be used). */
  747. /* Computing MAX */
  748. i__1 = 0, i__2 = ilaenv_(&c__3, "DGEQP3RK", " ", m, n, &c_n1, &c_n1, (
  749. ftnlen)8, (ftnlen)1);
  750. nx = f2cmax(i__1,i__2);
  751. if (nx < minmn) {
  752. /* Determine if workspace is large enough for blocked code. */
  753. if (*lwork < lwkopt) {
  754. /* Not enough workspace to use optimal block size that */
  755. /* is currently stored in NB. */
  756. /* Reduce NB and determine the minimum value of NB. */
  757. nb = (*lwork - (*n << 1)) / (*n + 1);
  758. /* Computing MAX */
  759. i__1 = 2, i__2 = ilaenv_(&c__2, "DGEQP3RK", " ", m, n, &c_n1,
  760. &c_n1, (ftnlen)8, (ftnlen)1);
  761. nbmin = f2cmax(i__1,i__2);
  762. }
  763. }
  764. }
  765. /* ================================================================== */
  766. /* DONE is the boolean flag to rerpresent the case when the */
  767. /* factorization completed in the block factorization routine, */
  768. /* before the end of the block. */
  769. done = FALSE_;
  770. /* J is the column index. */
  771. j = 1;
  772. /* (1) Use blocked code initially. */
  773. /* JMAXB is the maximum column index of the block, when the */
  774. /* blocked code is used, is also limited by the first stopping */
  775. /* criterion KMAX. */
  776. /* Computing MIN */
  777. i__1 = *kmax, i__2 = minmn - nx;
  778. jmaxb = f2cmin(i__1,i__2);
  779. if (nb >= nbmin && nb < jmax && jmaxb > 0) {
  780. /* Loop over the column blocks of the matrix A(1:M,1:JMAXB). Here: */
  781. /* J is the column index of a column block; */
  782. /* JB is the column block size to pass to block factorization */
  783. /* routine in a loop step; */
  784. /* JBF is the number of columns that were actually factorized */
  785. /* that was returned by the block factorization routine */
  786. /* in a loop step, JBF <= JB; */
  787. /* N_SUB is the number of columns in the submatrix; */
  788. /* IOFFSET is the number of rows that should not be factorized. */
  789. while(j <= jmaxb) {
  790. /* Computing MIN */
  791. i__1 = nb, i__2 = jmaxb - j + 1;
  792. jb = f2cmin(i__1,i__2);
  793. n_sub__ = *n - j + 1;
  794. ioffset = j - 1;
  795. /* Factorize JB columns among the columns A(J:N). */
  796. i__1 = *n + *nrhs - j + 1;
  797. dlaqp3rk_(m, &n_sub__, nrhs, &ioffset, &jb, abstol, reltol, &kp1,
  798. &maxc2nrm, &a[j * a_dim1 + 1], lda, &done, &jbf,
  799. maxc2nrmk, relmaxc2nrmk, &jpiv[j], &tau[j], &work[j], &
  800. work[*n + j], &work[(*n << 1) + 1], &work[(*n << 1) + jb
  801. + 1], &i__1, &iwork[1], &iinfo);
  802. /* Set INFO on the first occurence of Inf. */
  803. if (iinfo > n_sub__ && *info == 0) {
  804. *info = (ioffset << 1) + iinfo;
  805. }
  806. if (done) {
  807. /* Either the submatrix is zero before the end of the */
  808. /* column block, or ABSTOL or RELTOL criterion is */
  809. /* satisfied before the end of the column block, we can */
  810. /* return from the routine. Perform the following before */
  811. /* returning: */
  812. /* a) Set the number of factorized columns K, */
  813. /* K = IOFFSET + JBF from the last call of blocked */
  814. /* routine. */
  815. /* NOTE: 1) MAXC2NRMK and RELMAXC2NRMK are returned */
  816. /* by the block factorization routine; */
  817. /* 2) The remaining TAUs are set to ZERO by the */
  818. /* block factorization routine. */
  819. *k = ioffset + jbf;
  820. /* Set INFO on the first occurrence of NaN, NaN takes */
  821. /* prcedence over Inf. */
  822. if (iinfo <= n_sub__ && iinfo > 0) {
  823. *info = ioffset + iinfo;
  824. }
  825. /* Return from the routine. */
  826. work[1] = (doublereal) lwkopt;
  827. return 0;
  828. }
  829. j += jbf;
  830. }
  831. }
  832. /* Use unblocked code to factor the last or only block. */
  833. /* J = JMAX+1 means we factorized the maximum possible number of */
  834. /* columns, that is in ELSE clause we need to compute */
  835. /* the MAXC2NORM and RELMAXC2NORM to return after we processed */
  836. /* the blocks. */
  837. if (j <= jmax) {
  838. /* N_SUB is the number of columns in the submatrix; */
  839. /* IOFFSET is the number of rows that should not be factorized. */
  840. n_sub__ = *n - j + 1;
  841. ioffset = j - 1;
  842. i__1 = jmax - j + 1;
  843. dlaqp2rk_(m, &n_sub__, nrhs, &ioffset, &i__1, abstol, reltol, &kp1, &
  844. maxc2nrm, &a[j * a_dim1 + 1], lda, &kf, maxc2nrmk,
  845. relmaxc2nrmk, &jpiv[j], &tau[j], &work[j], &work[*n + j], &
  846. work[(*n << 1) + 1], &iinfo);
  847. /* ABSTOL or RELTOL criterion is satisfied when the number of */
  848. /* the factorized columns KF is smaller then the number */
  849. /* of columns JMAX-J+1 supplied to be factorized by the */
  850. /* unblocked routine, we can return from */
  851. /* the routine. Perform the following before returning: */
  852. /* a) Set the number of factorized columns K, */
  853. /* b) MAXC2NRMK and RELMAXC2NRMK are returned by the */
  854. /* unblocked factorization routine above. */
  855. *k = j - 1 + kf;
  856. /* Set INFO on the first exception occurence. */
  857. /* Set INFO on the first exception occurence of Inf or NaN, */
  858. /* (NaN takes precedence over Inf). */
  859. if (iinfo > n_sub__ && *info == 0) {
  860. *info = (ioffset << 1) + iinfo;
  861. } else if (iinfo <= n_sub__ && iinfo > 0) {
  862. *info = ioffset + iinfo;
  863. }
  864. } else {
  865. /* Compute the return values for blocked code. */
  866. /* Set the number of factorized columns if the unblocked routine */
  867. /* was not called. */
  868. *k = jmax;
  869. /* If there exits a residual matrix after the blocked code: */
  870. /* 1) compute the values of MAXC2NRMK, RELMAXC2NRMK of the */
  871. /* residual matrix, otherwise set them to ZERO; */
  872. /* 2) Set TAU(K+1:MINMN) to ZERO. */
  873. if (*k < minmn) {
  874. i__1 = *n - *k;
  875. jmaxc2nrm = *k + idamax_(&i__1, &work[*k + 1], &c__1);
  876. *maxc2nrmk = work[jmaxc2nrm];
  877. if (*k == 0) {
  878. *relmaxc2nrmk = 1.;
  879. } else {
  880. *relmaxc2nrmk = *maxc2nrmk / maxc2nrm;
  881. }
  882. i__1 = minmn;
  883. for (j = *k + 1; j <= i__1; ++j) {
  884. tau[j] = 0.;
  885. }
  886. }
  887. /* END IF( J.LE.JMAX ) THEN */
  888. }
  889. work[1] = (doublereal) lwkopt;
  890. return 0;
  891. /* End of DGEQP3RK */
  892. } /* dgeqp3rk_ */