You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctrsna.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461
  1. *> \brief \b CTRSNA
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CTRSNA + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctrsna.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctrsna.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctrsna.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
  22. * LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK,
  23. * INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER HOWMNY, JOB
  27. * INTEGER INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
  28. * ..
  29. * .. Array Arguments ..
  30. * LOGICAL SELECT( * )
  31. * REAL RWORK( * ), S( * ), SEP( * )
  32. * COMPLEX T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
  33. * $ WORK( LDWORK, * )
  34. * ..
  35. *
  36. *
  37. *> \par Purpose:
  38. * =============
  39. *>
  40. *> \verbatim
  41. *>
  42. *> CTRSNA estimates reciprocal condition numbers for specified
  43. *> eigenvalues and/or right eigenvectors of a complex upper triangular
  44. *> matrix T (or of any matrix Q*T*Q**H with Q unitary).
  45. *> \endverbatim
  46. *
  47. * Arguments:
  48. * ==========
  49. *
  50. *> \param[in] JOB
  51. *> \verbatim
  52. *> JOB is CHARACTER*1
  53. *> Specifies whether condition numbers are required for
  54. *> eigenvalues (S) or eigenvectors (SEP):
  55. *> = 'E': for eigenvalues only (S);
  56. *> = 'V': for eigenvectors only (SEP);
  57. *> = 'B': for both eigenvalues and eigenvectors (S and SEP).
  58. *> \endverbatim
  59. *>
  60. *> \param[in] HOWMNY
  61. *> \verbatim
  62. *> HOWMNY is CHARACTER*1
  63. *> = 'A': compute condition numbers for all eigenpairs;
  64. *> = 'S': compute condition numbers for selected eigenpairs
  65. *> specified by the array SELECT.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] SELECT
  69. *> \verbatim
  70. *> SELECT is LOGICAL array, dimension (N)
  71. *> If HOWMNY = 'S', SELECT specifies the eigenpairs for which
  72. *> condition numbers are required. To select condition numbers
  73. *> for the j-th eigenpair, SELECT(j) must be set to .TRUE..
  74. *> If HOWMNY = 'A', SELECT is not referenced.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] N
  78. *> \verbatim
  79. *> N is INTEGER
  80. *> The order of the matrix T. N >= 0.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] T
  84. *> \verbatim
  85. *> T is COMPLEX array, dimension (LDT,N)
  86. *> The upper triangular matrix T.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] LDT
  90. *> \verbatim
  91. *> LDT is INTEGER
  92. *> The leading dimension of the array T. LDT >= max(1,N).
  93. *> \endverbatim
  94. *>
  95. *> \param[in] VL
  96. *> \verbatim
  97. *> VL is COMPLEX array, dimension (LDVL,M)
  98. *> If JOB = 'E' or 'B', VL must contain left eigenvectors of T
  99. *> (or of any Q*T*Q**H with Q unitary), corresponding to the
  100. *> eigenpairs specified by HOWMNY and SELECT. The eigenvectors
  101. *> must be stored in consecutive columns of VL, as returned by
  102. *> CHSEIN or CTREVC.
  103. *> If JOB = 'V', VL is not referenced.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LDVL
  107. *> \verbatim
  108. *> LDVL is INTEGER
  109. *> The leading dimension of the array VL.
  110. *> LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
  111. *> \endverbatim
  112. *>
  113. *> \param[in] VR
  114. *> \verbatim
  115. *> VR is COMPLEX array, dimension (LDVR,M)
  116. *> If JOB = 'E' or 'B', VR must contain right eigenvectors of T
  117. *> (or of any Q*T*Q**H with Q unitary), corresponding to the
  118. *> eigenpairs specified by HOWMNY and SELECT. The eigenvectors
  119. *> must be stored in consecutive columns of VR, as returned by
  120. *> CHSEIN or CTREVC.
  121. *> If JOB = 'V', VR is not referenced.
  122. *> \endverbatim
  123. *>
  124. *> \param[in] LDVR
  125. *> \verbatim
  126. *> LDVR is INTEGER
  127. *> The leading dimension of the array VR.
  128. *> LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
  129. *> \endverbatim
  130. *>
  131. *> \param[out] S
  132. *> \verbatim
  133. *> S is REAL array, dimension (MM)
  134. *> If JOB = 'E' or 'B', the reciprocal condition numbers of the
  135. *> selected eigenvalues, stored in consecutive elements of the
  136. *> array. Thus S(j), SEP(j), and the j-th columns of VL and VR
  137. *> all correspond to the same eigenpair (but not in general the
  138. *> j-th eigenpair, unless all eigenpairs are selected).
  139. *> If JOB = 'V', S is not referenced.
  140. *> \endverbatim
  141. *>
  142. *> \param[out] SEP
  143. *> \verbatim
  144. *> SEP is REAL array, dimension (MM)
  145. *> If JOB = 'V' or 'B', the estimated reciprocal condition
  146. *> numbers of the selected eigenvectors, stored in consecutive
  147. *> elements of the array.
  148. *> If JOB = 'E', SEP is not referenced.
  149. *> \endverbatim
  150. *>
  151. *> \param[in] MM
  152. *> \verbatim
  153. *> MM is INTEGER
  154. *> The number of elements in the arrays S (if JOB = 'E' or 'B')
  155. *> and/or SEP (if JOB = 'V' or 'B'). MM >= M.
  156. *> \endverbatim
  157. *>
  158. *> \param[out] M
  159. *> \verbatim
  160. *> M is INTEGER
  161. *> The number of elements of the arrays S and/or SEP actually
  162. *> used to store the estimated condition numbers.
  163. *> If HOWMNY = 'A', M is set to N.
  164. *> \endverbatim
  165. *>
  166. *> \param[out] WORK
  167. *> \verbatim
  168. *> WORK is COMPLEX array, dimension (LDWORK,N+6)
  169. *> If JOB = 'E', WORK is not referenced.
  170. *> \endverbatim
  171. *>
  172. *> \param[in] LDWORK
  173. *> \verbatim
  174. *> LDWORK is INTEGER
  175. *> The leading dimension of the array WORK.
  176. *> LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
  177. *> \endverbatim
  178. *>
  179. *> \param[out] RWORK
  180. *> \verbatim
  181. *> RWORK is REAL array, dimension (N)
  182. *> If JOB = 'E', RWORK is not referenced.
  183. *> \endverbatim
  184. *>
  185. *> \param[out] INFO
  186. *> \verbatim
  187. *> INFO is INTEGER
  188. *> = 0: successful exit
  189. *> < 0: if INFO = -i, the i-th argument had an illegal value
  190. *> \endverbatim
  191. *
  192. * Authors:
  193. * ========
  194. *
  195. *> \author Univ. of Tennessee
  196. *> \author Univ. of California Berkeley
  197. *> \author Univ. of Colorado Denver
  198. *> \author NAG Ltd.
  199. *
  200. *> \ingroup complexOTHERcomputational
  201. *
  202. *> \par Further Details:
  203. * =====================
  204. *>
  205. *> \verbatim
  206. *>
  207. *> The reciprocal of the condition number of an eigenvalue lambda is
  208. *> defined as
  209. *>
  210. *> S(lambda) = |v**H*u| / (norm(u)*norm(v))
  211. *>
  212. *> where u and v are the right and left eigenvectors of T corresponding
  213. *> to lambda; v**H denotes the conjugate transpose of v, and norm(u)
  214. *> denotes the Euclidean norm. These reciprocal condition numbers always
  215. *> lie between zero (very badly conditioned) and one (very well
  216. *> conditioned). If n = 1, S(lambda) is defined to be 1.
  217. *>
  218. *> An approximate error bound for a computed eigenvalue W(i) is given by
  219. *>
  220. *> EPS * norm(T) / S(i)
  221. *>
  222. *> where EPS is the machine precision.
  223. *>
  224. *> The reciprocal of the condition number of the right eigenvector u
  225. *> corresponding to lambda is defined as follows. Suppose
  226. *>
  227. *> T = ( lambda c )
  228. *> ( 0 T22 )
  229. *>
  230. *> Then the reciprocal condition number is
  231. *>
  232. *> SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
  233. *>
  234. *> where sigma-min denotes the smallest singular value. We approximate
  235. *> the smallest singular value by the reciprocal of an estimate of the
  236. *> one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
  237. *> defined to be abs(T(1,1)).
  238. *>
  239. *> An approximate error bound for a computed right eigenvector VR(i)
  240. *> is given by
  241. *>
  242. *> EPS * norm(T) / SEP(i)
  243. *> \endverbatim
  244. *>
  245. * =====================================================================
  246. SUBROUTINE CTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
  247. $ LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK,
  248. $ INFO )
  249. *
  250. * -- LAPACK computational routine --
  251. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  252. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  253. *
  254. * .. Scalar Arguments ..
  255. CHARACTER HOWMNY, JOB
  256. INTEGER INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
  257. * ..
  258. * .. Array Arguments ..
  259. LOGICAL SELECT( * )
  260. REAL RWORK( * ), S( * ), SEP( * )
  261. COMPLEX T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
  262. $ WORK( LDWORK, * )
  263. * ..
  264. *
  265. * =====================================================================
  266. *
  267. * .. Parameters ..
  268. REAL ZERO, ONE
  269. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0+0 )
  270. * ..
  271. * .. Local Scalars ..
  272. LOGICAL SOMCON, WANTBH, WANTS, WANTSP
  273. CHARACTER NORMIN
  274. INTEGER I, IERR, IX, J, K, KASE, KS
  275. REAL BIGNUM, EPS, EST, LNRM, RNRM, SCALE, SMLNUM,
  276. $ XNORM
  277. COMPLEX CDUM, PROD
  278. * ..
  279. * .. Local Arrays ..
  280. INTEGER ISAVE( 3 )
  281. COMPLEX DUMMY( 1 )
  282. * ..
  283. * .. External Functions ..
  284. LOGICAL LSAME
  285. INTEGER ICAMAX
  286. REAL SCNRM2, SLAMCH
  287. COMPLEX CDOTC
  288. EXTERNAL LSAME, ICAMAX, SCNRM2, SLAMCH, CDOTC
  289. * ..
  290. * .. External Subroutines ..
  291. EXTERNAL CLACN2, CLACPY, CLATRS, CSRSCL, CTREXC, SLABAD,
  292. $ XERBLA
  293. * ..
  294. * .. Intrinsic Functions ..
  295. INTRINSIC ABS, AIMAG, MAX, REAL
  296. * ..
  297. * .. Statement Functions ..
  298. REAL CABS1
  299. * ..
  300. * .. Statement Function definitions ..
  301. CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
  302. * ..
  303. * .. Executable Statements ..
  304. *
  305. * Decode and test the input parameters
  306. *
  307. WANTBH = LSAME( JOB, 'B' )
  308. WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
  309. WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
  310. *
  311. SOMCON = LSAME( HOWMNY, 'S' )
  312. *
  313. * Set M to the number of eigenpairs for which condition numbers are
  314. * to be computed.
  315. *
  316. IF( SOMCON ) THEN
  317. M = 0
  318. DO 10 J = 1, N
  319. IF( SELECT( J ) )
  320. $ M = M + 1
  321. 10 CONTINUE
  322. ELSE
  323. M = N
  324. END IF
  325. *
  326. INFO = 0
  327. IF( .NOT.WANTS .AND. .NOT.WANTSP ) THEN
  328. INFO = -1
  329. ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
  330. INFO = -2
  331. ELSE IF( N.LT.0 ) THEN
  332. INFO = -4
  333. ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
  334. INFO = -6
  335. ELSE IF( LDVL.LT.1 .OR. ( WANTS .AND. LDVL.LT.N ) ) THEN
  336. INFO = -8
  337. ELSE IF( LDVR.LT.1 .OR. ( WANTS .AND. LDVR.LT.N ) ) THEN
  338. INFO = -10
  339. ELSE IF( MM.LT.M ) THEN
  340. INFO = -13
  341. ELSE IF( LDWORK.LT.1 .OR. ( WANTSP .AND. LDWORK.LT.N ) ) THEN
  342. INFO = -16
  343. END IF
  344. IF( INFO.NE.0 ) THEN
  345. CALL XERBLA( 'CTRSNA', -INFO )
  346. RETURN
  347. END IF
  348. *
  349. * Quick return if possible
  350. *
  351. IF( N.EQ.0 )
  352. $ RETURN
  353. *
  354. IF( N.EQ.1 ) THEN
  355. IF( SOMCON ) THEN
  356. IF( .NOT.SELECT( 1 ) )
  357. $ RETURN
  358. END IF
  359. IF( WANTS )
  360. $ S( 1 ) = ONE
  361. IF( WANTSP )
  362. $ SEP( 1 ) = ABS( T( 1, 1 ) )
  363. RETURN
  364. END IF
  365. *
  366. * Get machine constants
  367. *
  368. EPS = SLAMCH( 'P' )
  369. SMLNUM = SLAMCH( 'S' ) / EPS
  370. BIGNUM = ONE / SMLNUM
  371. CALL SLABAD( SMLNUM, BIGNUM )
  372. *
  373. KS = 1
  374. DO 50 K = 1, N
  375. *
  376. IF( SOMCON ) THEN
  377. IF( .NOT.SELECT( K ) )
  378. $ GO TO 50
  379. END IF
  380. *
  381. IF( WANTS ) THEN
  382. *
  383. * Compute the reciprocal condition number of the k-th
  384. * eigenvalue.
  385. *
  386. PROD = CDOTC( N, VR( 1, KS ), 1, VL( 1, KS ), 1 )
  387. RNRM = SCNRM2( N, VR( 1, KS ), 1 )
  388. LNRM = SCNRM2( N, VL( 1, KS ), 1 )
  389. S( KS ) = ABS( PROD ) / ( RNRM*LNRM )
  390. *
  391. END IF
  392. *
  393. IF( WANTSP ) THEN
  394. *
  395. * Estimate the reciprocal condition number of the k-th
  396. * eigenvector.
  397. *
  398. * Copy the matrix T to the array WORK and swap the k-th
  399. * diagonal element to the (1,1) position.
  400. *
  401. CALL CLACPY( 'Full', N, N, T, LDT, WORK, LDWORK )
  402. CALL CTREXC( 'No Q', N, WORK, LDWORK, DUMMY, 1, K, 1, IERR )
  403. *
  404. * Form C = T22 - lambda*I in WORK(2:N,2:N).
  405. *
  406. DO 20 I = 2, N
  407. WORK( I, I ) = WORK( I, I ) - WORK( 1, 1 )
  408. 20 CONTINUE
  409. *
  410. * Estimate a lower bound for the 1-norm of inv(C**H). The 1st
  411. * and (N+1)th columns of WORK are used to store work vectors.
  412. *
  413. SEP( KS ) = ZERO
  414. EST = ZERO
  415. KASE = 0
  416. NORMIN = 'N'
  417. 30 CONTINUE
  418. CALL CLACN2( N-1, WORK( 1, N+1 ), WORK, EST, KASE, ISAVE )
  419. *
  420. IF( KASE.NE.0 ) THEN
  421. IF( KASE.EQ.1 ) THEN
  422. *
  423. * Solve C**H*x = scale*b
  424. *
  425. CALL CLATRS( 'Upper', 'Conjugate transpose',
  426. $ 'Nonunit', NORMIN, N-1, WORK( 2, 2 ),
  427. $ LDWORK, WORK, SCALE, RWORK, IERR )
  428. ELSE
  429. *
  430. * Solve C*x = scale*b
  431. *
  432. CALL CLATRS( 'Upper', 'No transpose', 'Nonunit',
  433. $ NORMIN, N-1, WORK( 2, 2 ), LDWORK, WORK,
  434. $ SCALE, RWORK, IERR )
  435. END IF
  436. NORMIN = 'Y'
  437. IF( SCALE.NE.ONE ) THEN
  438. *
  439. * Multiply by 1/SCALE if doing so will not cause
  440. * overflow.
  441. *
  442. IX = ICAMAX( N-1, WORK, 1 )
  443. XNORM = CABS1( WORK( IX, 1 ) )
  444. IF( SCALE.LT.XNORM*SMLNUM .OR. SCALE.EQ.ZERO )
  445. $ GO TO 40
  446. CALL CSRSCL( N, SCALE, WORK, 1 )
  447. END IF
  448. GO TO 30
  449. END IF
  450. *
  451. SEP( KS ) = ONE / MAX( EST, SMLNUM )
  452. END IF
  453. *
  454. 40 CONTINUE
  455. KS = KS + 1
  456. 50 CONTINUE
  457. RETURN
  458. *
  459. * End of CTRSNA
  460. *
  461. END