You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctgsyl.f 24 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693
  1. *> \brief \b CTGSYL
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CTGSYL + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctgsyl.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctgsyl.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctgsyl.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CTGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
  22. * LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK,
  23. * IWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER TRANS
  27. * INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF,
  28. * $ LWORK, M, N
  29. * REAL DIF, SCALE
  30. * ..
  31. * .. Array Arguments ..
  32. * INTEGER IWORK( * )
  33. * COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * ),
  34. * $ D( LDD, * ), E( LDE, * ), F( LDF, * ),
  35. * $ WORK( * )
  36. * ..
  37. *
  38. *
  39. *> \par Purpose:
  40. * =============
  41. *>
  42. *> \verbatim
  43. *>
  44. *> CTGSYL solves the generalized Sylvester equation:
  45. *>
  46. *> A * R - L * B = scale * C (1)
  47. *> D * R - L * E = scale * F
  48. *>
  49. *> where R and L are unknown m-by-n matrices, (A, D), (B, E) and
  50. *> (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n,
  51. *> respectively, with complex entries. A, B, D and E are upper
  52. *> triangular (i.e., (A,D) and (B,E) in generalized Schur form).
  53. *>
  54. *> The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1
  55. *> is an output scaling factor chosen to avoid overflow.
  56. *>
  57. *> In matrix notation (1) is equivalent to solve Zx = scale*b, where Z
  58. *> is defined as
  59. *>
  60. *> Z = [ kron(In, A) -kron(B**H, Im) ] (2)
  61. *> [ kron(In, D) -kron(E**H, Im) ],
  62. *>
  63. *> Here Ix is the identity matrix of size x and X**H is the conjugate
  64. *> transpose of X. Kron(X, Y) is the Kronecker product between the
  65. *> matrices X and Y.
  66. *>
  67. *> If TRANS = 'C', y in the conjugate transposed system Z**H *y = scale*b
  68. *> is solved for, which is equivalent to solve for R and L in
  69. *>
  70. *> A**H * R + D**H * L = scale * C (3)
  71. *> R * B**H + L * E**H = scale * -F
  72. *>
  73. *> This case (TRANS = 'C') is used to compute an one-norm-based estimate
  74. *> of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)
  75. *> and (B,E), using CLACON.
  76. *>
  77. *> If IJOB >= 1, CTGSYL computes a Frobenius norm-based estimate of
  78. *> Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the
  79. *> reciprocal of the smallest singular value of Z.
  80. *>
  81. *> This is a level-3 BLAS algorithm.
  82. *> \endverbatim
  83. *
  84. * Arguments:
  85. * ==========
  86. *
  87. *> \param[in] TRANS
  88. *> \verbatim
  89. *> TRANS is CHARACTER*1
  90. *> = 'N': solve the generalized sylvester equation (1).
  91. *> = 'C': solve the "conjugate transposed" system (3).
  92. *> \endverbatim
  93. *>
  94. *> \param[in] IJOB
  95. *> \verbatim
  96. *> IJOB is INTEGER
  97. *> Specifies what kind of functionality to be performed.
  98. *> =0: solve (1) only.
  99. *> =1: The functionality of 0 and 3.
  100. *> =2: The functionality of 0 and 4.
  101. *> =3: Only an estimate of Dif[(A,D), (B,E)] is computed.
  102. *> (look ahead strategy is used).
  103. *> =4: Only an estimate of Dif[(A,D), (B,E)] is computed.
  104. *> (CGECON on sub-systems is used).
  105. *> Not referenced if TRANS = 'C'.
  106. *> \endverbatim
  107. *>
  108. *> \param[in] M
  109. *> \verbatim
  110. *> M is INTEGER
  111. *> The order of the matrices A and D, and the row dimension of
  112. *> the matrices C, F, R and L.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] N
  116. *> \verbatim
  117. *> N is INTEGER
  118. *> The order of the matrices B and E, and the column dimension
  119. *> of the matrices C, F, R and L.
  120. *> \endverbatim
  121. *>
  122. *> \param[in] A
  123. *> \verbatim
  124. *> A is COMPLEX array, dimension (LDA, M)
  125. *> The upper triangular matrix A.
  126. *> \endverbatim
  127. *>
  128. *> \param[in] LDA
  129. *> \verbatim
  130. *> LDA is INTEGER
  131. *> The leading dimension of the array A. LDA >= max(1, M).
  132. *> \endverbatim
  133. *>
  134. *> \param[in] B
  135. *> \verbatim
  136. *> B is COMPLEX array, dimension (LDB, N)
  137. *> The upper triangular matrix B.
  138. *> \endverbatim
  139. *>
  140. *> \param[in] LDB
  141. *> \verbatim
  142. *> LDB is INTEGER
  143. *> The leading dimension of the array B. LDB >= max(1, N).
  144. *> \endverbatim
  145. *>
  146. *> \param[in,out] C
  147. *> \verbatim
  148. *> C is COMPLEX array, dimension (LDC, N)
  149. *> On entry, C contains the right-hand-side of the first matrix
  150. *> equation in (1) or (3).
  151. *> On exit, if IJOB = 0, 1 or 2, C has been overwritten by
  152. *> the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R,
  153. *> the solution achieved during the computation of the
  154. *> Dif-estimate.
  155. *> \endverbatim
  156. *>
  157. *> \param[in] LDC
  158. *> \verbatim
  159. *> LDC is INTEGER
  160. *> The leading dimension of the array C. LDC >= max(1, M).
  161. *> \endverbatim
  162. *>
  163. *> \param[in] D
  164. *> \verbatim
  165. *> D is COMPLEX array, dimension (LDD, M)
  166. *> The upper triangular matrix D.
  167. *> \endverbatim
  168. *>
  169. *> \param[in] LDD
  170. *> \verbatim
  171. *> LDD is INTEGER
  172. *> The leading dimension of the array D. LDD >= max(1, M).
  173. *> \endverbatim
  174. *>
  175. *> \param[in] E
  176. *> \verbatim
  177. *> E is COMPLEX array, dimension (LDE, N)
  178. *> The upper triangular matrix E.
  179. *> \endverbatim
  180. *>
  181. *> \param[in] LDE
  182. *> \verbatim
  183. *> LDE is INTEGER
  184. *> The leading dimension of the array E. LDE >= max(1, N).
  185. *> \endverbatim
  186. *>
  187. *> \param[in,out] F
  188. *> \verbatim
  189. *> F is COMPLEX array, dimension (LDF, N)
  190. *> On entry, F contains the right-hand-side of the second matrix
  191. *> equation in (1) or (3).
  192. *> On exit, if IJOB = 0, 1 or 2, F has been overwritten by
  193. *> the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L,
  194. *> the solution achieved during the computation of the
  195. *> Dif-estimate.
  196. *> \endverbatim
  197. *>
  198. *> \param[in] LDF
  199. *> \verbatim
  200. *> LDF is INTEGER
  201. *> The leading dimension of the array F. LDF >= max(1, M).
  202. *> \endverbatim
  203. *>
  204. *> \param[out] DIF
  205. *> \verbatim
  206. *> DIF is REAL
  207. *> On exit DIF is the reciprocal of a lower bound of the
  208. *> reciprocal of the Dif-function, i.e. DIF is an upper bound of
  209. *> Dif[(A,D), (B,E)] = sigma-min(Z), where Z as in (2).
  210. *> IF IJOB = 0 or TRANS = 'C', DIF is not referenced.
  211. *> \endverbatim
  212. *>
  213. *> \param[out] SCALE
  214. *> \verbatim
  215. *> SCALE is REAL
  216. *> On exit SCALE is the scaling factor in (1) or (3).
  217. *> If 0 < SCALE < 1, C and F hold the solutions R and L, resp.,
  218. *> to a slightly perturbed system but the input matrices A, B,
  219. *> D and E have not been changed. If SCALE = 0, R and L will
  220. *> hold the solutions to the homogeneous system with C = F = 0.
  221. *> \endverbatim
  222. *>
  223. *> \param[out] WORK
  224. *> \verbatim
  225. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  226. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  227. *> \endverbatim
  228. *>
  229. *> \param[in] LWORK
  230. *> \verbatim
  231. *> LWORK is INTEGER
  232. *> The dimension of the array WORK. LWORK > = 1.
  233. *> If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N).
  234. *>
  235. *> If LWORK = -1, then a workspace query is assumed; the routine
  236. *> only calculates the optimal size of the WORK array, returns
  237. *> this value as the first entry of the WORK array, and no error
  238. *> message related to LWORK is issued by XERBLA.
  239. *> \endverbatim
  240. *>
  241. *> \param[out] IWORK
  242. *> \verbatim
  243. *> IWORK is INTEGER array, dimension (M+N+2)
  244. *> \endverbatim
  245. *>
  246. *> \param[out] INFO
  247. *> \verbatim
  248. *> INFO is INTEGER
  249. *> =0: successful exit
  250. *> <0: If INFO = -i, the i-th argument had an illegal value.
  251. *> >0: (A, D) and (B, E) have common or very close
  252. *> eigenvalues.
  253. *> \endverbatim
  254. *
  255. * Authors:
  256. * ========
  257. *
  258. *> \author Univ. of Tennessee
  259. *> \author Univ. of California Berkeley
  260. *> \author Univ. of Colorado Denver
  261. *> \author NAG Ltd.
  262. *
  263. *> \ingroup tgsyl
  264. *
  265. *> \par Contributors:
  266. * ==================
  267. *>
  268. *> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
  269. *> Umea University, S-901 87 Umea, Sweden.
  270. *
  271. *> \par References:
  272. * ================
  273. *>
  274. *> [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
  275. *> for Solving the Generalized Sylvester Equation and Estimating the
  276. *> Separation between Regular Matrix Pairs, Report UMINF - 93.23,
  277. *> Department of Computing Science, Umea University, S-901 87 Umea,
  278. *> Sweden, December 1993, Revised April 1994, Also as LAPACK Working
  279. *> Note 75. To appear in ACM Trans. on Math. Software, Vol 22,
  280. *> No 1, 1996.
  281. *> \n
  282. *> [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester
  283. *> Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal.
  284. *> Appl., 15(4):1045-1060, 1994.
  285. *> \n
  286. *> [3] B. Kagstrom and L. Westin, Generalized Schur Methods with
  287. *> Condition Estimators for Solving the Generalized Sylvester
  288. *> Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7,
  289. *> July 1989, pp 745-751.
  290. *>
  291. * =====================================================================
  292. SUBROUTINE CTGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
  293. $ LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK,
  294. $ IWORK, INFO )
  295. *
  296. * -- LAPACK computational routine --
  297. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  298. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  299. *
  300. * .. Scalar Arguments ..
  301. CHARACTER TRANS
  302. INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF,
  303. $ LWORK, M, N
  304. REAL DIF, SCALE
  305. * ..
  306. * .. Array Arguments ..
  307. INTEGER IWORK( * )
  308. COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * ),
  309. $ D( LDD, * ), E( LDE, * ), F( LDF, * ),
  310. $ WORK( * )
  311. * ..
  312. *
  313. * =====================================================================
  314. * Replaced various illegal calls to CCOPY by calls to CLASET.
  315. * Sven Hammarling, 1/5/02.
  316. *
  317. * .. Parameters ..
  318. REAL ZERO, ONE
  319. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  320. COMPLEX CZERO
  321. PARAMETER ( CZERO = (0.0E+0, 0.0E+0) )
  322. * ..
  323. * .. Local Scalars ..
  324. LOGICAL LQUERY, NOTRAN
  325. INTEGER I, IE, IFUNC, IROUND, IS, ISOLVE, J, JE, JS, K,
  326. $ LINFO, LWMIN, MB, NB, P, PQ, Q
  327. REAL DSCALE, DSUM, SCALE2, SCALOC
  328. * ..
  329. * .. External Functions ..
  330. LOGICAL LSAME
  331. INTEGER ILAENV
  332. REAL SROUNDUP_LWORK
  333. EXTERNAL LSAME, ILAENV, SROUNDUP_LWORK
  334. * ..
  335. * .. External Subroutines ..
  336. EXTERNAL CGEMM, CLACPY, CLASET, CSCAL, CTGSY2, XERBLA
  337. * ..
  338. * .. Intrinsic Functions ..
  339. INTRINSIC CMPLX, MAX, REAL, SQRT
  340. * ..
  341. * .. Executable Statements ..
  342. *
  343. * Decode and test input parameters
  344. *
  345. INFO = 0
  346. NOTRAN = LSAME( TRANS, 'N' )
  347. LQUERY = ( LWORK.EQ.-1 )
  348. *
  349. IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  350. INFO = -1
  351. ELSE IF( NOTRAN ) THEN
  352. IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.4 ) ) THEN
  353. INFO = -2
  354. END IF
  355. END IF
  356. IF( INFO.EQ.0 ) THEN
  357. IF( M.LE.0 ) THEN
  358. INFO = -3
  359. ELSE IF( N.LE.0 ) THEN
  360. INFO = -4
  361. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  362. INFO = -6
  363. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  364. INFO = -8
  365. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  366. INFO = -10
  367. ELSE IF( LDD.LT.MAX( 1, M ) ) THEN
  368. INFO = -12
  369. ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
  370. INFO = -14
  371. ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
  372. INFO = -16
  373. END IF
  374. END IF
  375. *
  376. IF( INFO.EQ.0 ) THEN
  377. IF( NOTRAN ) THEN
  378. IF( IJOB.EQ.1 .OR. IJOB.EQ.2 ) THEN
  379. LWMIN = MAX( 1, 2*M*N )
  380. ELSE
  381. LWMIN = 1
  382. END IF
  383. ELSE
  384. LWMIN = 1
  385. END IF
  386. WORK( 1 ) = SROUNDUP_LWORK(LWMIN)
  387. *
  388. IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  389. INFO = -20
  390. END IF
  391. END IF
  392. *
  393. IF( INFO.NE.0 ) THEN
  394. CALL XERBLA( 'CTGSYL', -INFO )
  395. RETURN
  396. ELSE IF( LQUERY ) THEN
  397. RETURN
  398. END IF
  399. *
  400. * Quick return if possible
  401. *
  402. IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  403. SCALE = 1
  404. IF( NOTRAN ) THEN
  405. IF( IJOB.NE.0 ) THEN
  406. DIF = 0
  407. END IF
  408. END IF
  409. RETURN
  410. END IF
  411. *
  412. * Determine optimal block sizes MB and NB
  413. *
  414. MB = ILAENV( 2, 'CTGSYL', TRANS, M, N, -1, -1 )
  415. NB = ILAENV( 5, 'CTGSYL', TRANS, M, N, -1, -1 )
  416. *
  417. ISOLVE = 1
  418. IFUNC = 0
  419. IF( NOTRAN ) THEN
  420. IF( IJOB.GE.3 ) THEN
  421. IFUNC = IJOB - 2
  422. CALL CLASET( 'F', M, N, CZERO, CZERO, C, LDC )
  423. CALL CLASET( 'F', M, N, CZERO, CZERO, F, LDF )
  424. ELSE IF( IJOB.GE.1 .AND. NOTRAN ) THEN
  425. ISOLVE = 2
  426. END IF
  427. END IF
  428. *
  429. IF( ( MB.LE.1 .AND. NB.LE.1 ) .OR. ( MB.GE.M .AND. NB.GE.N ) )
  430. $ THEN
  431. *
  432. * Use unblocked Level 2 solver
  433. *
  434. DO 30 IROUND = 1, ISOLVE
  435. *
  436. SCALE = ONE
  437. DSCALE = ZERO
  438. DSUM = ONE
  439. PQ = M*N
  440. CALL CTGSY2( TRANS, IFUNC, M, N, A, LDA, B, LDB, C, LDC, D,
  441. $ LDD, E, LDE, F, LDF, SCALE, DSUM, DSCALE,
  442. $ INFO )
  443. IF( DSCALE.NE.ZERO ) THEN
  444. IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN
  445. DIF = SQRT( REAL( 2*M*N ) ) / ( DSCALE*SQRT( DSUM ) )
  446. ELSE
  447. DIF = SQRT( REAL( PQ ) ) / ( DSCALE*SQRT( DSUM ) )
  448. END IF
  449. END IF
  450. IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN
  451. IF( NOTRAN ) THEN
  452. IFUNC = IJOB
  453. END IF
  454. SCALE2 = SCALE
  455. CALL CLACPY( 'F', M, N, C, LDC, WORK, M )
  456. CALL CLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M )
  457. CALL CLASET( 'F', M, N, CZERO, CZERO, C, LDC )
  458. CALL CLASET( 'F', M, N, CZERO, CZERO, F, LDF )
  459. ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN
  460. CALL CLACPY( 'F', M, N, WORK, M, C, LDC )
  461. CALL CLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF )
  462. SCALE = SCALE2
  463. END IF
  464. 30 CONTINUE
  465. *
  466. RETURN
  467. *
  468. END IF
  469. *
  470. * Determine block structure of A
  471. *
  472. P = 0
  473. I = 1
  474. 40 CONTINUE
  475. IF( I.GT.M )
  476. $ GO TO 50
  477. P = P + 1
  478. IWORK( P ) = I
  479. I = I + MB
  480. IF( I.GE.M )
  481. $ GO TO 50
  482. GO TO 40
  483. 50 CONTINUE
  484. IWORK( P+1 ) = M + 1
  485. IF( IWORK( P ).EQ.IWORK( P+1 ) )
  486. $ P = P - 1
  487. *
  488. * Determine block structure of B
  489. *
  490. Q = P + 1
  491. J = 1
  492. 60 CONTINUE
  493. IF( J.GT.N )
  494. $ GO TO 70
  495. *
  496. Q = Q + 1
  497. IWORK( Q ) = J
  498. J = J + NB
  499. IF( J.GE.N )
  500. $ GO TO 70
  501. GO TO 60
  502. *
  503. 70 CONTINUE
  504. IWORK( Q+1 ) = N + 1
  505. IF( IWORK( Q ).EQ.IWORK( Q+1 ) )
  506. $ Q = Q - 1
  507. *
  508. IF( NOTRAN ) THEN
  509. DO 150 IROUND = 1, ISOLVE
  510. *
  511. * Solve (I, J) - subsystem
  512. * A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J)
  513. * D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J)
  514. * for I = P, P - 1, ..., 1; J = 1, 2, ..., Q
  515. *
  516. PQ = 0
  517. SCALE = ONE
  518. DSCALE = ZERO
  519. DSUM = ONE
  520. DO 130 J = P + 2, Q
  521. JS = IWORK( J )
  522. JE = IWORK( J+1 ) - 1
  523. NB = JE - JS + 1
  524. DO 120 I = P, 1, -1
  525. IS = IWORK( I )
  526. IE = IWORK( I+1 ) - 1
  527. MB = IE - IS + 1
  528. CALL CTGSY2( TRANS, IFUNC, MB, NB, A( IS, IS ), LDA,
  529. $ B( JS, JS ), LDB, C( IS, JS ), LDC,
  530. $ D( IS, IS ), LDD, E( JS, JS ), LDE,
  531. $ F( IS, JS ), LDF, SCALOC, DSUM, DSCALE,
  532. $ LINFO )
  533. IF( LINFO.GT.0 )
  534. $ INFO = LINFO
  535. PQ = PQ + MB*NB
  536. IF( SCALOC.NE.ONE ) THEN
  537. DO 80 K = 1, JS - 1
  538. CALL CSCAL( M, CMPLX( SCALOC, ZERO ), C( 1, K ),
  539. $ 1 )
  540. CALL CSCAL( M, CMPLX( SCALOC, ZERO ), F( 1, K ),
  541. $ 1 )
  542. 80 CONTINUE
  543. DO 90 K = JS, JE
  544. CALL CSCAL( IS-1, CMPLX( SCALOC, ZERO ),
  545. $ C( 1, K ), 1 )
  546. CALL CSCAL( IS-1, CMPLX( SCALOC, ZERO ),
  547. $ F( 1, K ), 1 )
  548. 90 CONTINUE
  549. DO 100 K = JS, JE
  550. CALL CSCAL( M-IE, CMPLX( SCALOC, ZERO ),
  551. $ C( IE+1, K ), 1 )
  552. CALL CSCAL( M-IE, CMPLX( SCALOC, ZERO ),
  553. $ F( IE+1, K ), 1 )
  554. 100 CONTINUE
  555. DO 110 K = JE + 1, N
  556. CALL CSCAL( M, CMPLX( SCALOC, ZERO ), C( 1, K ),
  557. $ 1 )
  558. CALL CSCAL( M, CMPLX( SCALOC, ZERO ), F( 1, K ),
  559. $ 1 )
  560. 110 CONTINUE
  561. SCALE = SCALE*SCALOC
  562. END IF
  563. *
  564. * Substitute R(I,J) and L(I,J) into remaining equation.
  565. *
  566. IF( I.GT.1 ) THEN
  567. CALL CGEMM( 'N', 'N', IS-1, NB, MB,
  568. $ CMPLX( -ONE, ZERO ), A( 1, IS ), LDA,
  569. $ C( IS, JS ), LDC, CMPLX( ONE, ZERO ),
  570. $ C( 1, JS ), LDC )
  571. CALL CGEMM( 'N', 'N', IS-1, NB, MB,
  572. $ CMPLX( -ONE, ZERO ), D( 1, IS ), LDD,
  573. $ C( IS, JS ), LDC, CMPLX( ONE, ZERO ),
  574. $ F( 1, JS ), LDF )
  575. END IF
  576. IF( J.LT.Q ) THEN
  577. CALL CGEMM( 'N', 'N', MB, N-JE, NB,
  578. $ CMPLX( ONE, ZERO ), F( IS, JS ), LDF,
  579. $ B( JS, JE+1 ), LDB, CMPLX( ONE, ZERO ),
  580. $ C( IS, JE+1 ), LDC )
  581. CALL CGEMM( 'N', 'N', MB, N-JE, NB,
  582. $ CMPLX( ONE, ZERO ), F( IS, JS ), LDF,
  583. $ E( JS, JE+1 ), LDE, CMPLX( ONE, ZERO ),
  584. $ F( IS, JE+1 ), LDF )
  585. END IF
  586. 120 CONTINUE
  587. 130 CONTINUE
  588. IF( DSCALE.NE.ZERO ) THEN
  589. IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN
  590. DIF = SQRT( REAL( 2*M*N ) ) / ( DSCALE*SQRT( DSUM ) )
  591. ELSE
  592. DIF = SQRT( REAL( PQ ) ) / ( DSCALE*SQRT( DSUM ) )
  593. END IF
  594. END IF
  595. IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN
  596. IF( NOTRAN ) THEN
  597. IFUNC = IJOB
  598. END IF
  599. SCALE2 = SCALE
  600. CALL CLACPY( 'F', M, N, C, LDC, WORK, M )
  601. CALL CLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M )
  602. CALL CLASET( 'F', M, N, CZERO, CZERO, C, LDC )
  603. CALL CLASET( 'F', M, N, CZERO, CZERO, F, LDF )
  604. ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN
  605. CALL CLACPY( 'F', M, N, WORK, M, C, LDC )
  606. CALL CLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF )
  607. SCALE = SCALE2
  608. END IF
  609. 150 CONTINUE
  610. ELSE
  611. *
  612. * Solve transposed (I, J)-subsystem
  613. * A(I, I)**H * R(I, J) + D(I, I)**H * L(I, J) = C(I, J)
  614. * R(I, J) * B(J, J) + L(I, J) * E(J, J) = -F(I, J)
  615. * for I = 1,2,..., P; J = Q, Q-1,..., 1
  616. *
  617. SCALE = ONE
  618. DO 210 I = 1, P
  619. IS = IWORK( I )
  620. IE = IWORK( I+1 ) - 1
  621. MB = IE - IS + 1
  622. DO 200 J = Q, P + 2, -1
  623. JS = IWORK( J )
  624. JE = IWORK( J+1 ) - 1
  625. NB = JE - JS + 1
  626. CALL CTGSY2( TRANS, IFUNC, MB, NB, A( IS, IS ), LDA,
  627. $ B( JS, JS ), LDB, C( IS, JS ), LDC,
  628. $ D( IS, IS ), LDD, E( JS, JS ), LDE,
  629. $ F( IS, JS ), LDF, SCALOC, DSUM, DSCALE,
  630. $ LINFO )
  631. IF( LINFO.GT.0 )
  632. $ INFO = LINFO
  633. IF( SCALOC.NE.ONE ) THEN
  634. DO 160 K = 1, JS - 1
  635. CALL CSCAL( M, CMPLX( SCALOC, ZERO ), C( 1, K ),
  636. $ 1 )
  637. CALL CSCAL( M, CMPLX( SCALOC, ZERO ), F( 1, K ),
  638. $ 1 )
  639. 160 CONTINUE
  640. DO 170 K = JS, JE
  641. CALL CSCAL( IS-1, CMPLX( SCALOC, ZERO ), C( 1, K ),
  642. $ 1 )
  643. CALL CSCAL( IS-1, CMPLX( SCALOC, ZERO ), F( 1, K ),
  644. $ 1 )
  645. 170 CONTINUE
  646. DO 180 K = JS, JE
  647. CALL CSCAL( M-IE, CMPLX( SCALOC, ZERO ),
  648. $ C( IE+1, K ), 1 )
  649. CALL CSCAL( M-IE, CMPLX( SCALOC, ZERO ),
  650. $ F( IE+1, K ), 1 )
  651. 180 CONTINUE
  652. DO 190 K = JE + 1, N
  653. CALL CSCAL( M, CMPLX( SCALOC, ZERO ), C( 1, K ),
  654. $ 1 )
  655. CALL CSCAL( M, CMPLX( SCALOC, ZERO ), F( 1, K ),
  656. $ 1 )
  657. 190 CONTINUE
  658. SCALE = SCALE*SCALOC
  659. END IF
  660. *
  661. * Substitute R(I,J) and L(I,J) into remaining equation.
  662. *
  663. IF( J.GT.P+2 ) THEN
  664. CALL CGEMM( 'N', 'C', MB, JS-1, NB,
  665. $ CMPLX( ONE, ZERO ), C( IS, JS ), LDC,
  666. $ B( 1, JS ), LDB, CMPLX( ONE, ZERO ),
  667. $ F( IS, 1 ), LDF )
  668. CALL CGEMM( 'N', 'C', MB, JS-1, NB,
  669. $ CMPLX( ONE, ZERO ), F( IS, JS ), LDF,
  670. $ E( 1, JS ), LDE, CMPLX( ONE, ZERO ),
  671. $ F( IS, 1 ), LDF )
  672. END IF
  673. IF( I.LT.P ) THEN
  674. CALL CGEMM( 'C', 'N', M-IE, NB, MB,
  675. $ CMPLX( -ONE, ZERO ), A( IS, IE+1 ), LDA,
  676. $ C( IS, JS ), LDC, CMPLX( ONE, ZERO ),
  677. $ C( IE+1, JS ), LDC )
  678. CALL CGEMM( 'C', 'N', M-IE, NB, MB,
  679. $ CMPLX( -ONE, ZERO ), D( IS, IE+1 ), LDD,
  680. $ F( IS, JS ), LDF, CMPLX( ONE, ZERO ),
  681. $ C( IE+1, JS ), LDC )
  682. END IF
  683. 200 CONTINUE
  684. 210 CONTINUE
  685. END IF
  686. *
  687. WORK( 1 ) = SROUNDUP_LWORK(LWMIN)
  688. *
  689. RETURN
  690. *
  691. * End of CTGSYL
  692. *
  693. END