You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

claqp3rk.c 36 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle_() continue;
  235. #define myceiling_(w) {ceil(w)}
  236. #define myhuge_(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* -- translated by f2c (version 20000121).
  486. You must link the resulting object file with the libraries:
  487. -lf2c -lm (in that order)
  488. */
  489. /* Table of constant values */
  490. static complex c_b1 = {0.f,0.f};
  491. static complex c_b2 = {1.f,0.f};
  492. static integer c__1 = 1;
  493. /* Subroutine */ int claqp3rk_(integer *m, integer *n, integer *nrhs, integer
  494. *ioffset, integer *nb, real *abstol, real *reltol, integer *kp1, real
  495. *maxc2nrm, complex *a, integer *lda, logical *done, integer *kb, real
  496. *maxc2nrmk, real *relmaxc2nrmk, integer *jpiv, complex *tau, real *
  497. vn1, real *vn2, complex *auxv, complex *f, integer *ldf, integer *
  498. iwork, integer *info)
  499. {
  500. /* System generated locals */
  501. integer a_dim1, a_offset, f_dim1, f_offset, i__1, i__2, i__3;
  502. real r__1, r__2;
  503. complex q__1;
  504. /* Local variables */
  505. real temp, temp2;
  506. integer i__, j, k;
  507. real tol3z;
  508. extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *,
  509. integer *, complex *, complex *, integer *, complex *, integer *,
  510. complex *, complex *, integer *), cgemv_(char *,
  511. integer *, integer *, complex *, complex *, integer *, complex *,
  512. integer *, complex *, complex *, integer *), cswap_(
  513. integer *, complex *, integer *, complex *, integer *);
  514. integer itemp, minmnfact;
  515. real myhugeval;
  516. integer minmnupdt;
  517. extern real scnrm2_(integer *, complex *, integer *);
  518. integer if__, kp;
  519. extern /* Subroutine */ int clarfg_(integer *, complex *, complex *,
  520. integer *, complex *);
  521. extern real slamch_(char *);
  522. integer lsticc;
  523. extern integer isamax_(integer *, real *, integer *);
  524. real taunan;
  525. extern logical sisnan_(real *);
  526. complex aik;
  527. /* -- LAPACK auxiliary routine -- */
  528. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  529. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  530. /* ===================================================================== */
  531. /* Initialize INFO */
  532. /* Parameter adjustments */
  533. a_dim1 = *lda;
  534. a_offset = 1 + a_dim1 * 1;
  535. a -= a_offset;
  536. --jpiv;
  537. --tau;
  538. --vn1;
  539. --vn2;
  540. --auxv;
  541. f_dim1 = *ldf;
  542. f_offset = 1 + f_dim1 * 1;
  543. f -= f_offset;
  544. --iwork;
  545. /* Function Body */
  546. *info = 0;
  547. /* MINMNFACT in the smallest dimension of the submatrix */
  548. /* A(IOFFSET+1:M,1:N) to be factorized. */
  549. /* Computing MIN */
  550. i__1 = *m - *ioffset;
  551. minmnfact = f2cmin(i__1,*n);
  552. /* Computing MIN */
  553. i__1 = *m - *ioffset, i__2 = *n + *nrhs;
  554. minmnupdt = f2cmin(i__1,i__2);
  555. *nb = f2cmin(*nb,minmnfact);
  556. tol3z = sqrt(slamch_("Epsilon"));
  557. myhugeval = slamch_("Overflow");
  558. /* Compute factorization in a while loop over NB columns, */
  559. /* K is the column index in the block A(1:M,1:N). */
  560. k = 0;
  561. lsticc = 0;
  562. *done = FALSE_;
  563. while(k < *nb && lsticc == 0) {
  564. ++k;
  565. i__ = *ioffset + k;
  566. if (i__ == 1) {
  567. /* We are at the first column of the original whole matrix A_orig, */
  568. /* therefore we use the computed KP1 and MAXC2NRM from the */
  569. /* main routine. */
  570. kp = *kp1;
  571. } else {
  572. /* Determine the pivot column in K-th step, i.e. the index */
  573. /* of the column with the maximum 2-norm in the */
  574. /* submatrix A(I:M,K:N). */
  575. i__1 = *n - k + 1;
  576. kp = k - 1 + isamax_(&i__1, &vn1[k], &c__1);
  577. /* Determine the maximum column 2-norm and the relative maximum */
  578. /* column 2-norm of the submatrix A(I:M,K:N) in step K. */
  579. *maxc2nrmk = vn1[kp];
  580. /* ============================================================ */
  581. /* Check if the submatrix A(I:M,K:N) contains NaN, set */
  582. /* INFO parameter to the column number, where the first NaN */
  583. /* is found and return from the routine. */
  584. /* We need to check the condition only if the */
  585. /* column index (same as row index) of the original whole */
  586. /* matrix is larger than 1, since the condition for whole */
  587. /* original matrix is checked in the main routine. */
  588. if (sisnan_(maxc2nrmk)) {
  589. *done = TRUE_;
  590. /* Set KB, the number of factorized partial columns */
  591. /* that are non-zero in each step in the block, */
  592. /* i.e. the rank of the factor R. */
  593. /* Set IF, the number of processed rows in the block, which */
  594. /* is the same as the number of processed rows in */
  595. /* the original whole matrix A_orig. */
  596. *kb = k - 1;
  597. if__ = i__ - 1;
  598. *info = *kb + kp;
  599. /* Set RELMAXC2NRMK to NaN. */
  600. *relmaxc2nrmk = *maxc2nrmk;
  601. /* There is no need to apply the block reflector to the */
  602. /* residual of the matrix A stored in A(KB+1:M,KB+1:N), */
  603. /* since the submatrix contains NaN and we stop */
  604. /* the computation. */
  605. /* But, we need to apply the block reflector to the residual */
  606. /* right hand sides stored in A(KB+1:M,N+1:N+NRHS), if the */
  607. /* residual right hand sides exist. This occurs */
  608. /* when ( NRHS != 0 AND KB <= (M-IOFFSET) ): */
  609. /* A(I+1:M,N+1:N+NRHS) := A(I+1:M,N+1:N+NRHS) - */
  610. /* A(I+1:M,1:KB) * F(N+1:N+NRHS,1:KB)**H. */
  611. if (*nrhs > 0 && *kb < *m - *ioffset) {
  612. i__1 = *m - if__;
  613. q__1.r = -1.f, q__1.i = 0.f;
  614. cgemm_("No transpose", "Conjugate transpose", &i__1, nrhs,
  615. kb, &q__1, &a[if__ + 1 + a_dim1], lda, &f[*n + 1
  616. + f_dim1], ldf, &c_b2, &a[if__ + 1 + (*n + 1) *
  617. a_dim1], lda);
  618. }
  619. /* There is no need to recompute the 2-norm of the */
  620. /* difficult columns, since we stop the factorization. */
  621. /* Array TAU(KF+1:MINMNFACT) is not set and contains */
  622. /* undefined elements. */
  623. /* Return from the routine. */
  624. return 0;
  625. }
  626. /* Quick return, if the submatrix A(I:M,K:N) is */
  627. /* a zero matrix. We need to check it only if the column index */
  628. /* (same as row index) is larger than 1, since the condition */
  629. /* for the whole original matrix A_orig is checked in the main */
  630. /* routine. */
  631. if (*maxc2nrmk == 0.f) {
  632. *done = TRUE_;
  633. /* Set KB, the number of factorized partial columns */
  634. /* that are non-zero in each step in the block, */
  635. /* i.e. the rank of the factor R. */
  636. /* Set IF, the number of processed rows in the block, which */
  637. /* is the same as the number of processed rows in */
  638. /* the original whole matrix A_orig. */
  639. *kb = k - 1;
  640. if__ = i__ - 1;
  641. *relmaxc2nrmk = 0.f;
  642. /* There is no need to apply the block reflector to the */
  643. /* residual of the matrix A stored in A(KB+1:M,KB+1:N), */
  644. /* since the submatrix is zero and we stop the computation. */
  645. /* But, we need to apply the block reflector to the residual */
  646. /* right hand sides stored in A(KB+1:M,N+1:N+NRHS), if the */
  647. /* residual right hand sides exist. This occurs */
  648. /* when ( NRHS != 0 AND KB <= (M-IOFFSET) ): */
  649. /* A(I+1:M,N+1:N+NRHS) := A(I+1:M,N+1:N+NRHS) - */
  650. /* A(I+1:M,1:KB) * F(N+1:N+NRHS,1:KB)**H. */
  651. if (*nrhs > 0 && *kb < *m - *ioffset) {
  652. i__1 = *m - if__;
  653. q__1.r = -1.f, q__1.i = 0.f;
  654. cgemm_("No transpose", "Conjugate transpose", &i__1, nrhs,
  655. kb, &q__1, &a[if__ + 1 + a_dim1], lda, &f[*n + 1
  656. + f_dim1], ldf, &c_b2, &a[if__ + 1 + (*n + 1) *
  657. a_dim1], lda);
  658. }
  659. /* There is no need to recompute the 2-norm of the */
  660. /* difficult columns, since we stop the factorization. */
  661. /* Set TAUs corresponding to the columns that were not */
  662. /* factorized to ZERO, i.e. set TAU(KB+1:MINMNFACT) = CZERO, */
  663. /* which is equivalent to seting TAU(K:MINMNFACT) = CZERO. */
  664. i__1 = minmnfact;
  665. for (j = k; j <= i__1; ++j) {
  666. i__2 = j;
  667. tau[i__2].r = 0.f, tau[i__2].i = 0.f;
  668. }
  669. /* Return from the routine. */
  670. return 0;
  671. }
  672. /* ============================================================ */
  673. /* Check if the submatrix A(I:M,K:N) contains Inf, */
  674. /* set INFO parameter to the column number, where */
  675. /* the first Inf is found plus N, and continue */
  676. /* the computation. */
  677. /* We need to check the condition only if the */
  678. /* column index (same as row index) of the original whole */
  679. /* matrix is larger than 1, since the condition for whole */
  680. /* original matrix is checked in the main routine. */
  681. if (*info == 0 && *maxc2nrmk > myhugeval) {
  682. *info = *n + k - 1 + kp;
  683. }
  684. /* ============================================================ */
  685. /* Test for the second and third tolerance stopping criteria. */
  686. /* NOTE: There is no need to test for ABSTOL.GE.ZERO, since */
  687. /* MAXC2NRMK is non-negative. Similarly, there is no need */
  688. /* to test for RELTOL.GE.ZERO, since RELMAXC2NRMK is */
  689. /* non-negative. */
  690. /* We need to check the condition only if the */
  691. /* column index (same as row index) of the original whole */
  692. /* matrix is larger than 1, since the condition for whole */
  693. /* original matrix is checked in the main routine. */
  694. *relmaxc2nrmk = *maxc2nrmk / *maxc2nrm;
  695. if (*maxc2nrmk <= *abstol || *relmaxc2nrmk <= *reltol) {
  696. *done = TRUE_;
  697. /* Set KB, the number of factorized partial columns */
  698. /* that are non-zero in each step in the block, */
  699. /* i.e. the rank of the factor R. */
  700. /* Set IF, the number of processed rows in the block, which */
  701. /* is the same as the number of processed rows in */
  702. /* the original whole matrix A_orig; */
  703. *kb = k - 1;
  704. if__ = i__ - 1;
  705. /* Apply the block reflector to the residual of the */
  706. /* matrix A and the residual of the right hand sides B, if */
  707. /* the residual matrix and and/or the residual of the right */
  708. /* hand sides exist, i.e. if the submatrix */
  709. /* A(I+1:M,KB+1:N+NRHS) exists. This occurs when */
  710. /* KB < MINMNUPDT = f2cmin( M-IOFFSET, N+NRHS ): */
  711. /* A(IF+1:M,K+1:N+NRHS) := A(IF+1:M,KB+1:N+NRHS) - */
  712. /* A(IF+1:M,1:KB) * F(KB+1:N+NRHS,1:KB)**H. */
  713. if (*kb < minmnupdt) {
  714. i__1 = *m - if__;
  715. i__2 = *n + *nrhs - *kb;
  716. q__1.r = -1.f, q__1.i = 0.f;
  717. cgemm_("No transpose", "Conjugate transpose", &i__1, &
  718. i__2, kb, &q__1, &a[if__ + 1 + a_dim1], lda, &f[*
  719. kb + 1 + f_dim1], ldf, &c_b2, &a[if__ + 1 + (*kb
  720. + 1) * a_dim1], lda);
  721. }
  722. /* There is no need to recompute the 2-norm of the */
  723. /* difficult columns, since we stop the factorization. */
  724. /* Set TAUs corresponding to the columns that were not */
  725. /* factorized to ZERO, i.e. set TAU(KB+1:MINMNFACT) = CZERO, */
  726. /* which is equivalent to seting TAU(K:MINMNFACT) = CZERO. */
  727. i__1 = minmnfact;
  728. for (j = k; j <= i__1; ++j) {
  729. i__2 = j;
  730. tau[i__2].r = 0.f, tau[i__2].i = 0.f;
  731. }
  732. /* Return from the routine. */
  733. return 0;
  734. }
  735. /* ============================================================ */
  736. /* End ELSE of IF(I.EQ.1) */
  737. }
  738. /* =============================================================== */
  739. /* If the pivot column is not the first column of the */
  740. /* subblock A(1:M,K:N): */
  741. /* 1) swap the K-th column and the KP-th pivot column */
  742. /* in A(1:M,1:N); */
  743. /* 2) swap the K-th row and the KP-th row in F(1:N,1:K-1) */
  744. /* 3) copy the K-th element into the KP-th element of the partial */
  745. /* and exact 2-norm vectors VN1 and VN2. (Swap is not needed */
  746. /* for VN1 and VN2 since we use the element with the index */
  747. /* larger than K in the next loop step.) */
  748. /* 4) Save the pivot interchange with the indices relative to the */
  749. /* the original matrix A_orig, not the block A(1:M,1:N). */
  750. if (kp != k) {
  751. cswap_(m, &a[kp * a_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1);
  752. i__1 = k - 1;
  753. cswap_(&i__1, &f[kp + f_dim1], ldf, &f[k + f_dim1], ldf);
  754. vn1[kp] = vn1[k];
  755. vn2[kp] = vn2[k];
  756. itemp = jpiv[kp];
  757. jpiv[kp] = jpiv[k];
  758. jpiv[k] = itemp;
  759. }
  760. /* Apply previous Householder reflectors to column K: */
  761. /* A(I:M,K) := A(I:M,K) - A(I:M,1:K-1)*F(K,1:K-1)**H. */
  762. if (k > 1) {
  763. i__1 = k - 1;
  764. for (j = 1; j <= i__1; ++j) {
  765. i__2 = k + j * f_dim1;
  766. r_cnjg(&q__1, &f[k + j * f_dim1]);
  767. f[i__2].r = q__1.r, f[i__2].i = q__1.i;
  768. }
  769. i__1 = *m - i__ + 1;
  770. i__2 = k - 1;
  771. q__1.r = -1.f, q__1.i = 0.f;
  772. cgemv_("No transpose", &i__1, &i__2, &q__1, &a[i__ + a_dim1], lda,
  773. &f[k + f_dim1], ldf, &c_b2, &a[i__ + k * a_dim1], &c__1);
  774. i__1 = k - 1;
  775. for (j = 1; j <= i__1; ++j) {
  776. i__2 = k + j * f_dim1;
  777. r_cnjg(&q__1, &f[k + j * f_dim1]);
  778. f[i__2].r = q__1.r, f[i__2].i = q__1.i;
  779. }
  780. }
  781. /* Generate elementary reflector H(k) using the column A(I:M,K). */
  782. if (i__ < *m) {
  783. i__1 = *m - i__ + 1;
  784. clarfg_(&i__1, &a[i__ + k * a_dim1], &a[i__ + 1 + k * a_dim1], &
  785. c__1, &tau[k]);
  786. } else {
  787. i__1 = k;
  788. tau[i__1].r = 0.f, tau[i__1].i = 0.f;
  789. }
  790. /* Check if TAU(K) contains NaN, set INFO parameter */
  791. /* to the column number where NaN is found and return from */
  792. /* the routine. */
  793. /* NOTE: There is no need to check TAU(K) for Inf, */
  794. /* since CLARFG cannot produce TAU(KK) or Householder vector */
  795. /* below the diagonal containing Inf. Only BETA on the diagonal, */
  796. /* returned by CLARFG can contain Inf, which requires */
  797. /* TAU(K) to contain NaN. Therefore, this case of generating Inf */
  798. /* by CLARFG is covered by checking TAU(K) for NaN. */
  799. i__1 = k;
  800. r__1 = tau[i__1].r;
  801. if (sisnan_(&r__1)) {
  802. i__1 = k;
  803. taunan = tau[i__1].r;
  804. } else /* if(complicated condition) */ {
  805. r__1 = r_imag(&tau[k]);
  806. if (sisnan_(&r__1)) {
  807. taunan = r_imag(&tau[k]);
  808. } else {
  809. taunan = 0.f;
  810. }
  811. }
  812. if (sisnan_(&taunan)) {
  813. *done = TRUE_;
  814. /* Set KB, the number of factorized partial columns */
  815. /* that are non-zero in each step in the block, */
  816. /* i.e. the rank of the factor R. */
  817. /* Set IF, the number of processed rows in the block, which */
  818. /* is the same as the number of processed rows in */
  819. /* the original whole matrix A_orig. */
  820. *kb = k - 1;
  821. if__ = i__ - 1;
  822. *info = k;
  823. /* Set MAXC2NRMK and RELMAXC2NRMK to NaN. */
  824. *maxc2nrmk = taunan;
  825. *relmaxc2nrmk = taunan;
  826. /* There is no need to apply the block reflector to the */
  827. /* residual of the matrix A stored in A(KB+1:M,KB+1:N), */
  828. /* since the submatrix contains NaN and we stop */
  829. /* the computation. */
  830. /* But, we need to apply the block reflector to the residual */
  831. /* right hand sides stored in A(KB+1:M,N+1:N+NRHS), if the */
  832. /* residual right hand sides exist. This occurs */
  833. /* when ( NRHS != 0 AND KB <= (M-IOFFSET) ): */
  834. /* A(I+1:M,N+1:N+NRHS) := A(I+1:M,N+1:N+NRHS) - */
  835. /* A(I+1:M,1:KB) * F(N+1:N+NRHS,1:KB)**H. */
  836. if (*nrhs > 0 && *kb < *m - *ioffset) {
  837. i__1 = *m - if__;
  838. q__1.r = -1.f, q__1.i = 0.f;
  839. cgemm_("No transpose", "Conjugate transpose", &i__1, nrhs, kb,
  840. &q__1, &a[if__ + 1 + a_dim1], lda, &f[*n + 1 +
  841. f_dim1], ldf, &c_b2, &a[if__ + 1 + (*n + 1) * a_dim1],
  842. lda);
  843. }
  844. /* There is no need to recompute the 2-norm of the */
  845. /* difficult columns, since we stop the factorization. */
  846. /* Array TAU(KF+1:MINMNFACT) is not set and contains */
  847. /* undefined elements. */
  848. /* Return from the routine. */
  849. return 0;
  850. }
  851. /* =============================================================== */
  852. i__1 = i__ + k * a_dim1;
  853. aik.r = a[i__1].r, aik.i = a[i__1].i;
  854. i__1 = i__ + k * a_dim1;
  855. a[i__1].r = 1.f, a[i__1].i = 0.f;
  856. /* =============================================================== */
  857. /* Compute the current K-th column of F: */
  858. /* 1) F(K+1:N,K) := tau(K) * A(I:M,K+1:N)**H * A(I:M,K). */
  859. if (k < *n + *nrhs) {
  860. i__1 = *m - i__ + 1;
  861. i__2 = *n + *nrhs - k;
  862. cgemv_("Conjugate transpose", &i__1, &i__2, &tau[k], &a[i__ + (k
  863. + 1) * a_dim1], lda, &a[i__ + k * a_dim1], &c__1, &c_b1, &
  864. f[k + 1 + k * f_dim1], &c__1);
  865. }
  866. /* 2) Zero out elements above and on the diagonal of the */
  867. /* column K in matrix F, i.e elements F(1:K,K). */
  868. i__1 = k;
  869. for (j = 1; j <= i__1; ++j) {
  870. i__2 = j + k * f_dim1;
  871. f[i__2].r = 0.f, f[i__2].i = 0.f;
  872. }
  873. /* 3) Incremental updating of the K-th column of F: */
  874. /* F(1:N,K) := F(1:N,K) - tau(K) * F(1:N,1:K-1) * A(I:M,1:K-1)**H */
  875. /* * A(I:M,K). */
  876. if (k > 1) {
  877. i__1 = *m - i__ + 1;
  878. i__2 = k - 1;
  879. i__3 = k;
  880. q__1.r = -tau[i__3].r, q__1.i = -tau[i__3].i;
  881. cgemv_("Conjugate Transpose", &i__1, &i__2, &q__1, &a[i__ +
  882. a_dim1], lda, &a[i__ + k * a_dim1], &c__1, &c_b1, &auxv[1]
  883. , &c__1);
  884. i__1 = *n + *nrhs;
  885. i__2 = k - 1;
  886. cgemv_("No transpose", &i__1, &i__2, &c_b2, &f[f_dim1 + 1], ldf, &
  887. auxv[1], &c__1, &c_b2, &f[k * f_dim1 + 1], &c__1);
  888. }
  889. /* =============================================================== */
  890. /* Update the current I-th row of A: */
  891. /* A(I,K+1:N+NRHS) := A(I,K+1:N+NRHS) */
  892. /* - A(I,1:K)*F(K+1:N+NRHS,1:K)**H. */
  893. if (k < *n + *nrhs) {
  894. i__1 = *n + *nrhs - k;
  895. q__1.r = -1.f, q__1.i = 0.f;
  896. cgemm_("No transpose", "Conjugate transpose", &c__1, &i__1, &k, &
  897. q__1, &a[i__ + a_dim1], lda, &f[k + 1 + f_dim1], ldf, &
  898. c_b2, &a[i__ + (k + 1) * a_dim1], lda);
  899. }
  900. i__1 = i__ + k * a_dim1;
  901. a[i__1].r = aik.r, a[i__1].i = aik.i;
  902. /* Update the partial column 2-norms for the residual matrix, */
  903. /* only if the residual matrix A(I+1:M,K+1:N) exists, i.e. */
  904. /* when K < MINMNFACT = f2cmin( M-IOFFSET, N ). */
  905. if (k < minmnfact) {
  906. i__1 = *n;
  907. for (j = k + 1; j <= i__1; ++j) {
  908. if (vn1[j] != 0.f) {
  909. /* NOTE: The following lines follow from the analysis in */
  910. /* Lapack Working Note 176. */
  911. temp = c_abs(&a[i__ + j * a_dim1]) / vn1[j];
  912. /* Computing MAX */
  913. r__1 = 0.f, r__2 = (temp + 1.f) * (1.f - temp);
  914. temp = f2cmax(r__1,r__2);
  915. /* Computing 2nd power */
  916. r__1 = vn1[j] / vn2[j];
  917. temp2 = temp * (r__1 * r__1);
  918. if (temp2 <= tol3z) {
  919. /* At J-index, we have a difficult column for the */
  920. /* update of the 2-norm. Save the index of the previous */
  921. /* difficult column in IWORK(J-1). */
  922. /* NOTE: ILSTCC > 1, threfore we can use IWORK only */
  923. /* with N-1 elements, where the elements are */
  924. /* shifted by 1 to the left. */
  925. iwork[j - 1] = lsticc;
  926. /* Set the index of the last difficult column LSTICC. */
  927. lsticc = j;
  928. } else {
  929. vn1[j] *= sqrt(temp);
  930. }
  931. }
  932. }
  933. }
  934. /* End of while loop. */
  935. }
  936. /* Now, afler the loop: */
  937. /* Set KB, the number of factorized columns in the block; */
  938. /* Set IF, the number of processed rows in the block, which */
  939. /* is the same as the number of processed rows in */
  940. /* the original whole matrix A_orig, IF = IOFFSET + KB. */
  941. *kb = k;
  942. if__ = i__;
  943. /* Apply the block reflector to the residual of the matrix A */
  944. /* and the residual of the right hand sides B, if the residual */
  945. /* matrix and and/or the residual of the right hand sides */
  946. /* exist, i.e. if the submatrix A(I+1:M,KB+1:N+NRHS) exists. */
  947. /* This occurs when KB < MINMNUPDT = f2cmin( M-IOFFSET, N+NRHS ): */
  948. /* A(IF+1:M,K+1:N+NRHS) := A(IF+1:M,KB+1:N+NRHS) - */
  949. /* A(IF+1:M,1:KB) * F(KB+1:N+NRHS,1:KB)**H. */
  950. if (*kb < minmnupdt) {
  951. i__1 = *m - if__;
  952. i__2 = *n + *nrhs - *kb;
  953. q__1.r = -1.f, q__1.i = 0.f;
  954. cgemm_("No transpose", "Conjugate transpose", &i__1, &i__2, kb, &q__1,
  955. &a[if__ + 1 + a_dim1], lda, &f[*kb + 1 + f_dim1], ldf, &c_b2,
  956. &a[if__ + 1 + (*kb + 1) * a_dim1], lda);
  957. }
  958. /* Recompute the 2-norm of the difficult columns. */
  959. /* Loop over the index of the difficult columns from the largest */
  960. /* to the smallest index. */
  961. while(lsticc > 0) {
  962. /* LSTICC is the index of the last difficult column is greater */
  963. /* than 1. */
  964. /* ITEMP is the index of the previous difficult column. */
  965. itemp = iwork[lsticc - 1];
  966. /* Compute the 2-norm explicilty for the last difficult column and */
  967. /* save it in the partial and exact 2-norm vectors VN1 and VN2. */
  968. /* NOTE: The computation of VN1( LSTICC ) relies on the fact that */
  969. /* SCNRM2 does not fail on vectors with norm below the value of */
  970. /* SQRT(SLAMCH('S')) */
  971. i__1 = *m - if__;
  972. vn1[lsticc] = scnrm2_(&i__1, &a[if__ + 1 + lsticc * a_dim1], &c__1);
  973. vn2[lsticc] = vn1[lsticc];
  974. /* Downdate the index of the last difficult column to */
  975. /* the index of the previous difficult column. */
  976. lsticc = itemp;
  977. }
  978. return 0;
  979. /* End of CLAQP3RK */
  980. } /* claqp3rk_ */