You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

claqp2rk.c 28 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle_() continue;
  235. #define myceiling_(w) {ceil(w)}
  236. #define myhuge_(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* -- translated by f2c (version 20000121).
  486. You must link the resulting object file with the libraries:
  487. -lf2c -lm (in that order)
  488. */
  489. /* Table of constant values */
  490. static integer c__1 = 1;
  491. /* Subroutine */ int claqp2rk_(integer *m, integer *n, integer *nrhs, integer
  492. *ioffset, integer *kmax, real *abstol, real *reltol, integer *kp1,
  493. real *maxc2nrm, complex *a, integer *lda, integer *k, real *maxc2nrmk,
  494. real *relmaxc2nrmk, integer *jpiv, complex *tau, real *vn1, real *
  495. vn2, complex *work, integer *info)
  496. {
  497. /* System generated locals */
  498. integer a_dim1, a_offset, i__1, i__2, i__3;
  499. real r__1;
  500. complex q__1;
  501. /* Local variables */
  502. complex aikk;
  503. real temp, temp2;
  504. integer i__, j;
  505. real tol3z;
  506. integer jmaxc2nrm;
  507. extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex *
  508. , integer *, complex *, complex *, integer *, complex *),
  509. cswap_(integer *, complex *, integer *, complex *, integer *);
  510. integer itemp, minmnfact;
  511. real myhugeval;
  512. integer minmnupdt;
  513. extern real scnrm2_(integer *, complex *, integer *);
  514. integer kk, kp;
  515. extern /* Subroutine */ int clarfg_(integer *, complex *, complex *,
  516. integer *, complex *);
  517. extern real slamch_(char *);
  518. extern integer isamax_(integer *, real *, integer *);
  519. real taunan;
  520. extern logical sisnan_(real *);
  521. /* -- LAPACK auxiliary routine -- */
  522. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  523. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  524. /* ===================================================================== */
  525. /* Initialize INFO */
  526. /* Parameter adjustments */
  527. a_dim1 = *lda;
  528. a_offset = 1 + a_dim1 * 1;
  529. a -= a_offset;
  530. --jpiv;
  531. --tau;
  532. --vn1;
  533. --vn2;
  534. --work;
  535. /* Function Body */
  536. *info = 0;
  537. /* MINMNFACT in the smallest dimension of the submatrix */
  538. /* A(IOFFSET+1:M,1:N) to be factorized. */
  539. /* MINMNUPDT is the smallest dimension */
  540. /* of the subarray A(IOFFSET+1:M,1:N+NRHS) to be udated, which */
  541. /* contains the submatrices A(IOFFSET+1:M,1:N) and */
  542. /* B(IOFFSET+1:M,1:NRHS) as column blocks. */
  543. /* Computing MIN */
  544. i__1 = *m - *ioffset;
  545. minmnfact = f2cmin(i__1,*n);
  546. /* Computing MIN */
  547. i__1 = *m - *ioffset, i__2 = *n + *nrhs;
  548. minmnupdt = f2cmin(i__1,i__2);
  549. *kmax = f2cmin(*kmax,minmnfact);
  550. tol3z = sqrt(slamch_("Epsilon"));
  551. myhugeval = slamch_("Overflow");
  552. /* Compute the factorization, KK is the lomn loop index. */
  553. i__1 = *kmax;
  554. for (kk = 1; kk <= i__1; ++kk) {
  555. i__ = *ioffset + kk;
  556. if (i__ == 1) {
  557. /* ============================================================ */
  558. /* We are at the first column of the original whole matrix A, */
  559. /* therefore we use the computed KP1 and MAXC2NRM from the */
  560. /* main routine. */
  561. kp = *kp1;
  562. /* ============================================================ */
  563. } else {
  564. /* ============================================================ */
  565. /* Determine the pivot column in KK-th step, i.e. the index */
  566. /* of the column with the maximum 2-norm in the */
  567. /* submatrix A(I:M,K:N). */
  568. i__2 = *n - kk + 1;
  569. kp = kk - 1 + isamax_(&i__2, &vn1[kk], &c__1);
  570. /* Determine the maximum column 2-norm and the relative maximum */
  571. /* column 2-norm of the submatrix A(I:M,KK:N) in step KK. */
  572. /* RELMAXC2NRMK will be computed later, after somecondition */
  573. /* checks on MAXC2NRMK. */
  574. *maxc2nrmk = vn1[kp];
  575. /* ============================================================ */
  576. /* Check if the submatrix A(I:M,KK:N) contains NaN, and set */
  577. /* INFO parameter to the column number, where the first NaN */
  578. /* is found and return from the routine. */
  579. /* We need to check the condition only if the */
  580. /* column index (same as row index) of the original whole */
  581. /* matrix is larger than 1, since the condition for whole */
  582. /* original matrix is checked in the main routine. */
  583. if (sisnan_(maxc2nrmk)) {
  584. /* Set K, the number of factorized columns. */
  585. /* that are not zero. */
  586. *k = kk - 1;
  587. *info = *k + kp;
  588. /* Set RELMAXC2NRMK to NaN. */
  589. *relmaxc2nrmk = *maxc2nrmk;
  590. /* Array TAU(K+1:MINMNFACT) is not set and contains */
  591. /* undefined elements. */
  592. return 0;
  593. }
  594. /* ============================================================ */
  595. /* Quick return, if the submatrix A(I:M,KK:N) is */
  596. /* a zero matrix. */
  597. /* We need to check the condition only if the */
  598. /* column index (same as row index) of the original whole */
  599. /* matrix is larger than 1, since the condition for whole */
  600. /* original matrix is checked in the main routine. */
  601. if (*maxc2nrmk == 0.f) {
  602. /* Set K, the number of factorized columns. */
  603. /* that are not zero. */
  604. *k = kk - 1;
  605. *relmaxc2nrmk = 0.f;
  606. /* Set TAUs corresponding to the columns that were not */
  607. /* factorized to ZERO, i.e. set TAU(KK:MINMNFACT) to CZERO. */
  608. i__2 = minmnfact;
  609. for (j = kk; j <= i__2; ++j) {
  610. i__3 = j;
  611. tau[i__3].r = 0.f, tau[i__3].i = 0.f;
  612. }
  613. /* Return from the routine. */
  614. return 0;
  615. }
  616. /* ============================================================ */
  617. /* Check if the submatrix A(I:M,KK:N) contains Inf, */
  618. /* set INFO parameter to the column number, where */
  619. /* the first Inf is found plus N, and continue */
  620. /* the computation. */
  621. /* We need to check the condition only if the */
  622. /* column index (same as row index) of the original whole */
  623. /* matrix is larger than 1, since the condition for whole */
  624. /* original matrix is checked in the main routine. */
  625. if (*info == 0 && *maxc2nrmk > myhugeval) {
  626. *info = *n + kk - 1 + kp;
  627. }
  628. /* ============================================================ */
  629. /* Test for the second and third stopping criteria. */
  630. /* NOTE: There is no need to test for ABSTOL >= ZERO, since */
  631. /* MAXC2NRMK is non-negative. Similarly, there is no need */
  632. /* to test for RELTOL >= ZERO, since RELMAXC2NRMK is */
  633. /* non-negative. */
  634. /* We need to check the condition only if the */
  635. /* column index (same as row index) of the original whole */
  636. /* matrix is larger than 1, since the condition for whole */
  637. /* original matrix is checked in the main routine. */
  638. *relmaxc2nrmk = *maxc2nrmk / *maxc2nrm;
  639. if (*maxc2nrmk <= *abstol || *relmaxc2nrmk <= *reltol) {
  640. /* Set K, the number of factorized columns. */
  641. *k = kk - 1;
  642. /* Set TAUs corresponding to the columns that were not */
  643. /* factorized to ZERO, i.e. set TAU(KK:MINMNFACT) to CZERO. */
  644. i__2 = minmnfact;
  645. for (j = kk; j <= i__2; ++j) {
  646. i__3 = j;
  647. tau[i__3].r = 0.f, tau[i__3].i = 0.f;
  648. }
  649. /* Return from the routine. */
  650. return 0;
  651. }
  652. /* ============================================================ */
  653. /* End ELSE of IF(I.EQ.1) */
  654. }
  655. /* =============================================================== */
  656. /* If the pivot column is not the first column of the */
  657. /* subblock A(1:M,KK:N): */
  658. /* 1) swap the KK-th column and the KP-th pivot column */
  659. /* in A(1:M,1:N); */
  660. /* 2) copy the KK-th element into the KP-th element of the partial */
  661. /* and exact 2-norm vectors VN1 and VN2. ( Swap is not needed */
  662. /* for VN1 and VN2 since we use the element with the index */
  663. /* larger than KK in the next loop step.) */
  664. /* 3) Save the pivot interchange with the indices relative to the */
  665. /* the original matrix A, not the block A(1:M,1:N). */
  666. if (kp != kk) {
  667. cswap_(m, &a[kp * a_dim1 + 1], &c__1, &a[kk * a_dim1 + 1], &c__1);
  668. vn1[kp] = vn1[kk];
  669. vn2[kp] = vn2[kk];
  670. itemp = jpiv[kp];
  671. jpiv[kp] = jpiv[kk];
  672. jpiv[kk] = itemp;
  673. }
  674. /* Generate elementary reflector H(KK) using the column A(I:M,KK), */
  675. /* if the column has more than one element, otherwise */
  676. /* the elementary reflector would be an identity matrix, */
  677. /* and TAU(KK) = CZERO. */
  678. if (i__ < *m) {
  679. i__2 = *m - i__ + 1;
  680. clarfg_(&i__2, &a[i__ + kk * a_dim1], &a[i__ + 1 + kk * a_dim1], &
  681. c__1, &tau[kk]);
  682. } else {
  683. i__2 = kk;
  684. tau[i__2].r = 0.f, tau[i__2].i = 0.f;
  685. }
  686. /* Check if TAU(KK) contains NaN, set INFO parameter */
  687. /* to the column number where NaN is found and return from */
  688. /* the routine. */
  689. /* NOTE: There is no need to check TAU(KK) for Inf, */
  690. /* since CLARFG cannot produce TAU(KK) or Householder vector */
  691. /* below the diagonal containing Inf. Only BETA on the diagonal, */
  692. /* returned by CLARFG can contain Inf, which requires */
  693. /* TAU(KK) to contain NaN. Therefore, this case of generating Inf */
  694. /* by CLARFG is covered by checking TAU(KK) for NaN. */
  695. i__2 = kk;
  696. r__1 = tau[i__2].r;
  697. if (sisnan_(&r__1)) {
  698. i__2 = kk;
  699. taunan = tau[i__2].r;
  700. } else /* if(complicated condition) */ {
  701. r__1 = r_imag(&tau[kk]);
  702. if (sisnan_(&r__1)) {
  703. taunan = r_imag(&tau[kk]);
  704. } else {
  705. taunan = 0.f;
  706. }
  707. }
  708. if (sisnan_(&taunan)) {
  709. *k = kk - 1;
  710. *info = kk;
  711. /* Set MAXC2NRMK and RELMAXC2NRMK to NaN. */
  712. *maxc2nrmk = taunan;
  713. *relmaxc2nrmk = taunan;
  714. /* Array TAU(KK:MINMNFACT) is not set and contains */
  715. /* undefined elements, except the first element TAU(KK) = NaN. */
  716. return 0;
  717. }
  718. /* Apply H(KK)**H to A(I:M,KK+1:N+NRHS) from the left. */
  719. /* ( If M >= N, then at KK = N there is no residual matrix, */
  720. /* i.e. no columns of A to update, only columns of B. */
  721. /* If M < N, then at KK = M-IOFFSET, I = M and we have a */
  722. /* one-row residual matrix in A and the elementary */
  723. /* reflector is a unit matrix, TAU(KK) = CZERO, i.e. no update */
  724. /* is needed for the residual matrix in A and the */
  725. /* right-hand-side-matrix in B. */
  726. /* Therefore, we update only if */
  727. /* KK < MINMNUPDT = f2cmin(M-IOFFSET, N+NRHS) */
  728. /* condition is satisfied, not only KK < N+NRHS ) */
  729. if (kk < minmnupdt) {
  730. i__2 = i__ + kk * a_dim1;
  731. aikk.r = a[i__2].r, aikk.i = a[i__2].i;
  732. i__2 = i__ + kk * a_dim1;
  733. a[i__2].r = 1.f, a[i__2].i = 0.f;
  734. i__2 = *m - i__ + 1;
  735. i__3 = *n + *nrhs - kk;
  736. r_cnjg(&q__1, &tau[kk]);
  737. clarf_("Left", &i__2, &i__3, &a[i__ + kk * a_dim1], &c__1, &q__1,
  738. &a[i__ + (kk + 1) * a_dim1], lda, &work[1]);
  739. i__2 = i__ + kk * a_dim1;
  740. a[i__2].r = aikk.r, a[i__2].i = aikk.i;
  741. }
  742. if (kk < minmnfact) {
  743. /* Update the partial column 2-norms for the residual matrix, */
  744. /* only if the residual matrix A(I+1:M,KK+1:N) exists, i.e. */
  745. /* when KK < f2cmin(M-IOFFSET, N). */
  746. i__2 = *n;
  747. for (j = kk + 1; j <= i__2; ++j) {
  748. if (vn1[j] != 0.f) {
  749. /* NOTE: The following lines follow from the analysis in */
  750. /* Lapack Working Note 176. */
  751. /* Computing 2nd power */
  752. r__1 = c_abs(&a[i__ + j * a_dim1]) / vn1[j];
  753. temp = 1.f - r__1 * r__1;
  754. temp = f2cmax(temp,0.f);
  755. /* Computing 2nd power */
  756. r__1 = vn1[j] / vn2[j];
  757. temp2 = temp * (r__1 * r__1);
  758. if (temp2 <= tol3z) {
  759. /* Compute the column 2-norm for the partial */
  760. /* column A(I+1:M,J) by explicitly computing it, */
  761. /* and store it in both partial 2-norm vector VN1 */
  762. /* and exact column 2-norm vector VN2. */
  763. i__3 = *m - i__;
  764. vn1[j] = scnrm2_(&i__3, &a[i__ + 1 + j * a_dim1], &
  765. c__1);
  766. vn2[j] = vn1[j];
  767. } else {
  768. /* Update the column 2-norm for the partial */
  769. /* column A(I+1:M,J) by removing one */
  770. /* element A(I,J) and store it in partial */
  771. /* 2-norm vector VN1. */
  772. vn1[j] *= sqrt(temp);
  773. }
  774. }
  775. }
  776. }
  777. /* End factorization loop */
  778. }
  779. /* If we reached this point, all colunms have been factorized, */
  780. /* i.e. no condition was triggered to exit the routine. */
  781. /* Set the number of factorized columns. */
  782. *k = *kmax;
  783. /* We reached the end of the loop, i.e. all KMAX columns were */
  784. /* factorized, we need to set MAXC2NRMK and RELMAXC2NRMK before */
  785. /* we return. */
  786. if (*k < minmnfact) {
  787. i__1 = *n - *k;
  788. jmaxc2nrm = *k + isamax_(&i__1, &vn1[*k + 1], &c__1);
  789. *maxc2nrmk = vn1[jmaxc2nrm];
  790. if (*k == 0) {
  791. *relmaxc2nrmk = 1.f;
  792. } else {
  793. *relmaxc2nrmk = *maxc2nrmk / *maxc2nrm;
  794. }
  795. } else {
  796. *maxc2nrmk = 0.f;
  797. *relmaxc2nrmk = 0.f;
  798. }
  799. /* We reached the end of the loop, i.e. all KMAX columns were */
  800. /* factorized, set TAUs corresponding to the columns that were */
  801. /* not factorized to ZERO, i.e. TAU(K+1:MINMNFACT) set to CZERO. */
  802. i__1 = minmnfact;
  803. for (j = *k + 1; j <= i__1; ++j) {
  804. i__2 = j;
  805. tau[i__2].r = 0.f, tau[i__2].i = 0.f;
  806. }
  807. return 0;
  808. /* End of CLAQP2RK */
  809. } /* claqp2rk_ */