You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chegvd.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404
  1. *> \brief \b CHEGVD
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CHEGVD + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chegvd.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chegvd.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chegvd.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CHEGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
  22. * LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBZ, UPLO
  26. * INTEGER INFO, ITYPE, LDA, LDB, LIWORK, LRWORK, LWORK, N
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IWORK( * )
  30. * REAL RWORK( * ), W( * )
  31. * COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> CHEGVD computes all the eigenvalues, and optionally, the eigenvectors
  41. *> of a complex generalized Hermitian-definite eigenproblem, of the form
  42. *> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
  43. *> B are assumed to be Hermitian and B is also positive definite.
  44. *> If eigenvectors are desired, it uses a divide and conquer algorithm.
  45. *>
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] ITYPE
  52. *> \verbatim
  53. *> ITYPE is INTEGER
  54. *> Specifies the problem type to be solved:
  55. *> = 1: A*x = (lambda)*B*x
  56. *> = 2: A*B*x = (lambda)*x
  57. *> = 3: B*A*x = (lambda)*x
  58. *> \endverbatim
  59. *>
  60. *> \param[in] JOBZ
  61. *> \verbatim
  62. *> JOBZ is CHARACTER*1
  63. *> = 'N': Compute eigenvalues only;
  64. *> = 'V': Compute eigenvalues and eigenvectors.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] UPLO
  68. *> \verbatim
  69. *> UPLO is CHARACTER*1
  70. *> = 'U': Upper triangles of A and B are stored;
  71. *> = 'L': Lower triangles of A and B are stored.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] N
  75. *> \verbatim
  76. *> N is INTEGER
  77. *> The order of the matrices A and B. N >= 0.
  78. *> \endverbatim
  79. *>
  80. *> \param[in,out] A
  81. *> \verbatim
  82. *> A is COMPLEX array, dimension (LDA, N)
  83. *> On entry, the Hermitian matrix A. If UPLO = 'U', the
  84. *> leading N-by-N upper triangular part of A contains the
  85. *> upper triangular part of the matrix A. If UPLO = 'L',
  86. *> the leading N-by-N lower triangular part of A contains
  87. *> the lower triangular part of the matrix A.
  88. *>
  89. *> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
  90. *> matrix Z of eigenvectors. The eigenvectors are normalized
  91. *> as follows:
  92. *> if ITYPE = 1 or 2, Z**H*B*Z = I;
  93. *> if ITYPE = 3, Z**H*inv(B)*Z = I.
  94. *> If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
  95. *> or the lower triangle (if UPLO='L') of A, including the
  96. *> diagonal, is destroyed.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] LDA
  100. *> \verbatim
  101. *> LDA is INTEGER
  102. *> The leading dimension of the array A. LDA >= max(1,N).
  103. *> \endverbatim
  104. *>
  105. *> \param[in,out] B
  106. *> \verbatim
  107. *> B is COMPLEX array, dimension (LDB, N)
  108. *> On entry, the Hermitian matrix B. If UPLO = 'U', the
  109. *> leading N-by-N upper triangular part of B contains the
  110. *> upper triangular part of the matrix B. If UPLO = 'L',
  111. *> the leading N-by-N lower triangular part of B contains
  112. *> the lower triangular part of the matrix B.
  113. *>
  114. *> On exit, if INFO <= N, the part of B containing the matrix is
  115. *> overwritten by the triangular factor U or L from the Cholesky
  116. *> factorization B = U**H*U or B = L*L**H.
  117. *> \endverbatim
  118. *>
  119. *> \param[in] LDB
  120. *> \verbatim
  121. *> LDB is INTEGER
  122. *> The leading dimension of the array B. LDB >= max(1,N).
  123. *> \endverbatim
  124. *>
  125. *> \param[out] W
  126. *> \verbatim
  127. *> W is REAL array, dimension (N)
  128. *> If INFO = 0, the eigenvalues in ascending order.
  129. *> \endverbatim
  130. *>
  131. *> \param[out] WORK
  132. *> \verbatim
  133. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  134. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  135. *> \endverbatim
  136. *>
  137. *> \param[in] LWORK
  138. *> \verbatim
  139. *> LWORK is INTEGER
  140. *> The length of the array WORK.
  141. *> If N <= 1, LWORK >= 1.
  142. *> If JOBZ = 'N' and N > 1, LWORK >= N + 1.
  143. *> If JOBZ = 'V' and N > 1, LWORK >= 2*N + N**2.
  144. *>
  145. *> If LWORK = -1, then a workspace query is assumed; the routine
  146. *> only calculates the optimal sizes of the WORK, RWORK and
  147. *> IWORK arrays, returns these values as the first entries of
  148. *> the WORK, RWORK and IWORK arrays, and no error message
  149. *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  150. *> \endverbatim
  151. *>
  152. *> \param[out] RWORK
  153. *> \verbatim
  154. *> RWORK is REAL array, dimension (MAX(1,LRWORK))
  155. *> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
  156. *> \endverbatim
  157. *>
  158. *> \param[in] LRWORK
  159. *> \verbatim
  160. *> LRWORK is INTEGER
  161. *> The dimension of the array RWORK.
  162. *> If N <= 1, LRWORK >= 1.
  163. *> If JOBZ = 'N' and N > 1, LRWORK >= N.
  164. *> If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
  165. *>
  166. *> If LRWORK = -1, then a workspace query is assumed; the
  167. *> routine only calculates the optimal sizes of the WORK, RWORK
  168. *> and IWORK arrays, returns these values as the first entries
  169. *> of the WORK, RWORK and IWORK arrays, and no error message
  170. *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  171. *> \endverbatim
  172. *>
  173. *> \param[out] IWORK
  174. *> \verbatim
  175. *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  176. *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  177. *> \endverbatim
  178. *>
  179. *> \param[in] LIWORK
  180. *> \verbatim
  181. *> LIWORK is INTEGER
  182. *> The dimension of the array IWORK.
  183. *> If N <= 1, LIWORK >= 1.
  184. *> If JOBZ = 'N' and N > 1, LIWORK >= 1.
  185. *> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
  186. *>
  187. *> If LIWORK = -1, then a workspace query is assumed; the
  188. *> routine only calculates the optimal sizes of the WORK, RWORK
  189. *> and IWORK arrays, returns these values as the first entries
  190. *> of the WORK, RWORK and IWORK arrays, and no error message
  191. *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
  192. *> \endverbatim
  193. *>
  194. *> \param[out] INFO
  195. *> \verbatim
  196. *> INFO is INTEGER
  197. *> = 0: successful exit
  198. *> < 0: if INFO = -i, the i-th argument had an illegal value
  199. *> > 0: CPOTRF or CHEEVD returned an error code:
  200. *> <= N: if INFO = i and JOBZ = 'N', then the algorithm
  201. *> failed to converge; i off-diagonal elements of an
  202. *> intermediate tridiagonal form did not converge to
  203. *> zero;
  204. *> if INFO = i and JOBZ = 'V', then the algorithm
  205. *> failed to compute an eigenvalue while working on
  206. *> the submatrix lying in rows and columns INFO/(N+1)
  207. *> through mod(INFO,N+1);
  208. *> > N: if INFO = N + i, for 1 <= i <= N, then the leading
  209. *> principal minor of order i of B is not positive.
  210. *> The factorization of B could not be completed and
  211. *> no eigenvalues or eigenvectors were computed.
  212. *> \endverbatim
  213. *
  214. * Authors:
  215. * ========
  216. *
  217. *> \author Univ. of Tennessee
  218. *> \author Univ. of California Berkeley
  219. *> \author Univ. of Colorado Denver
  220. *> \author NAG Ltd.
  221. *
  222. *> \ingroup hegvd
  223. *
  224. *> \par Further Details:
  225. * =====================
  226. *>
  227. *> \verbatim
  228. *>
  229. *> Modified so that no backsubstitution is performed if CHEEVD fails to
  230. *> converge (NEIG in old code could be greater than N causing out of
  231. *> bounds reference to A - reported by Ralf Meyer). Also corrected the
  232. *> description of INFO and the test on ITYPE. Sven, 16 Feb 05.
  233. *> \endverbatim
  234. *
  235. *> \par Contributors:
  236. * ==================
  237. *>
  238. *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
  239. *>
  240. * =====================================================================
  241. SUBROUTINE CHEGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
  242. $ LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
  243. *
  244. * -- LAPACK driver routine --
  245. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  246. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  247. *
  248. * .. Scalar Arguments ..
  249. CHARACTER JOBZ, UPLO
  250. INTEGER INFO, ITYPE, LDA, LDB, LIWORK, LRWORK, LWORK, N
  251. * ..
  252. * .. Array Arguments ..
  253. INTEGER IWORK( * )
  254. REAL RWORK( * ), W( * )
  255. COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
  256. * ..
  257. *
  258. * =====================================================================
  259. *
  260. * .. Parameters ..
  261. COMPLEX CONE
  262. PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
  263. * ..
  264. * .. Local Scalars ..
  265. LOGICAL LQUERY, UPPER, WANTZ
  266. CHARACTER TRANS
  267. INTEGER LIOPT, LIWMIN, LOPT, LROPT, LRWMIN, LWMIN
  268. * ..
  269. * .. External Functions ..
  270. LOGICAL LSAME
  271. REAL SROUNDUP_LWORK
  272. EXTERNAL LSAME, SROUNDUP_LWORK
  273. * ..
  274. * .. External Subroutines ..
  275. EXTERNAL CHEEVD, CHEGST, CPOTRF, CTRMM, CTRSM, XERBLA
  276. * ..
  277. * .. Intrinsic Functions ..
  278. INTRINSIC MAX, REAL
  279. * ..
  280. * .. Executable Statements ..
  281. *
  282. * Test the input parameters.
  283. *
  284. WANTZ = LSAME( JOBZ, 'V' )
  285. UPPER = LSAME( UPLO, 'U' )
  286. LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  287. *
  288. INFO = 0
  289. IF( N.LE.1 ) THEN
  290. LWMIN = 1
  291. LRWMIN = 1
  292. LIWMIN = 1
  293. ELSE IF( WANTZ ) THEN
  294. LWMIN = 2*N + N*N
  295. LRWMIN = 1 + 5*N + 2*N*N
  296. LIWMIN = 3 + 5*N
  297. ELSE
  298. LWMIN = N + 1
  299. LRWMIN = N
  300. LIWMIN = 1
  301. END IF
  302. LOPT = LWMIN
  303. LROPT = LRWMIN
  304. LIOPT = LIWMIN
  305. IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  306. INFO = -1
  307. ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  308. INFO = -2
  309. ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  310. INFO = -3
  311. ELSE IF( N.LT.0 ) THEN
  312. INFO = -4
  313. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  314. INFO = -6
  315. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  316. INFO = -8
  317. END IF
  318. *
  319. IF( INFO.EQ.0 ) THEN
  320. WORK( 1 ) = SROUNDUP_LWORK(LOPT)
  321. RWORK( 1 ) = LROPT
  322. IWORK( 1 ) = LIOPT
  323. *
  324. IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  325. INFO = -11
  326. ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
  327. INFO = -13
  328. ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  329. INFO = -15
  330. END IF
  331. END IF
  332. *
  333. IF( INFO.NE.0 ) THEN
  334. CALL XERBLA( 'CHEGVD', -INFO )
  335. RETURN
  336. ELSE IF( LQUERY ) THEN
  337. RETURN
  338. END IF
  339. *
  340. * Quick return if possible
  341. *
  342. IF( N.EQ.0 )
  343. $ RETURN
  344. *
  345. * Form a Cholesky factorization of B.
  346. *
  347. CALL CPOTRF( UPLO, N, B, LDB, INFO )
  348. IF( INFO.NE.0 ) THEN
  349. INFO = N + INFO
  350. RETURN
  351. END IF
  352. *
  353. * Transform problem to standard eigenvalue problem and solve.
  354. *
  355. CALL CHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  356. CALL CHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, LRWORK,
  357. $ IWORK, LIWORK, INFO )
  358. LOPT = INT( MAX( REAL( LOPT ), REAL( WORK( 1 ) ) ) )
  359. LROPT = INT( MAX( REAL( LROPT ), REAL( RWORK( 1 ) ) ) )
  360. LIOPT = INT( MAX( REAL( LIOPT ), REAL( IWORK( 1 ) ) ) )
  361. *
  362. IF( WANTZ .AND. INFO.EQ.0 ) THEN
  363. *
  364. * Backtransform eigenvectors to the original problem.
  365. *
  366. IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
  367. *
  368. * For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
  369. * backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
  370. *
  371. IF( UPPER ) THEN
  372. TRANS = 'N'
  373. ELSE
  374. TRANS = 'C'
  375. END IF
  376. *
  377. CALL CTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, N, CONE,
  378. $ B, LDB, A, LDA )
  379. *
  380. ELSE IF( ITYPE.EQ.3 ) THEN
  381. *
  382. * For B*A*x=(lambda)*x;
  383. * backtransform eigenvectors: x = L*y or U**H *y
  384. *
  385. IF( UPPER ) THEN
  386. TRANS = 'C'
  387. ELSE
  388. TRANS = 'N'
  389. END IF
  390. *
  391. CALL CTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, N, CONE,
  392. $ B, LDB, A, LDA )
  393. END IF
  394. END IF
  395. *
  396. WORK( 1 ) = SROUNDUP_LWORK(LOPT)
  397. RWORK( 1 ) = LROPT
  398. IWORK( 1 ) = LIOPT
  399. *
  400. RETURN
  401. *
  402. * End of CHEGVD
  403. *
  404. END