You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zdrvpt.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578
  1. *> \brief \b ZDRVPT
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZDRVPT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, D,
  12. * E, B, X, XACT, WORK, RWORK, NOUT )
  13. *
  14. * .. Scalar Arguments ..
  15. * LOGICAL TSTERR
  16. * INTEGER NN, NOUT, NRHS
  17. * DOUBLE PRECISION THRESH
  18. * ..
  19. * .. Array Arguments ..
  20. * LOGICAL DOTYPE( * )
  21. * INTEGER NVAL( * )
  22. * DOUBLE PRECISION D( * ), RWORK( * )
  23. * COMPLEX*16 A( * ), B( * ), E( * ), WORK( * ), X( * ),
  24. * $ XACT( * )
  25. * ..
  26. *
  27. *
  28. *> \par Purpose:
  29. * =============
  30. *>
  31. *> \verbatim
  32. *>
  33. *> ZDRVPT tests ZPTSV and -SVX.
  34. *> \endverbatim
  35. *
  36. * Arguments:
  37. * ==========
  38. *
  39. *> \param[in] DOTYPE
  40. *> \verbatim
  41. *> DOTYPE is LOGICAL array, dimension (NTYPES)
  42. *> The matrix types to be used for testing. Matrices of type j
  43. *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
  44. *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
  45. *> \endverbatim
  46. *>
  47. *> \param[in] NN
  48. *> \verbatim
  49. *> NN is INTEGER
  50. *> The number of values of N contained in the vector NVAL.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] NVAL
  54. *> \verbatim
  55. *> NVAL is INTEGER array, dimension (NN)
  56. *> The values of the matrix dimension N.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] NRHS
  60. *> \verbatim
  61. *> NRHS is INTEGER
  62. *> The number of right hand side vectors to be generated for
  63. *> each linear system.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] THRESH
  67. *> \verbatim
  68. *> THRESH is DOUBLE PRECISION
  69. *> The threshold value for the test ratios. A result is
  70. *> included in the output file if RESULT >= THRESH. To have
  71. *> every test ratio printed, use THRESH = 0.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] TSTERR
  75. *> \verbatim
  76. *> TSTERR is LOGICAL
  77. *> Flag that indicates whether error exits are to be tested.
  78. *> \endverbatim
  79. *>
  80. *> \param[out] A
  81. *> \verbatim
  82. *> A is COMPLEX*16 array, dimension (NMAX*2)
  83. *> \endverbatim
  84. *>
  85. *> \param[out] D
  86. *> \verbatim
  87. *> D is DOUBLE PRECISION array, dimension (NMAX*2)
  88. *> \endverbatim
  89. *>
  90. *> \param[out] E
  91. *> \verbatim
  92. *> E is COMPLEX*16 array, dimension (NMAX*2)
  93. *> \endverbatim
  94. *>
  95. *> \param[out] B
  96. *> \verbatim
  97. *> B is COMPLEX*16 array, dimension (NMAX*NRHS)
  98. *> \endverbatim
  99. *>
  100. *> \param[out] X
  101. *> \verbatim
  102. *> X is COMPLEX*16 array, dimension (NMAX*NRHS)
  103. *> \endverbatim
  104. *>
  105. *> \param[out] XACT
  106. *> \verbatim
  107. *> XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
  108. *> \endverbatim
  109. *>
  110. *> \param[out] WORK
  111. *> \verbatim
  112. *> WORK is COMPLEX*16 array, dimension
  113. *> (NMAX*max(3,NRHS))
  114. *> \endverbatim
  115. *>
  116. *> \param[out] RWORK
  117. *> \verbatim
  118. *> RWORK is DOUBLE PRECISION array, dimension (NMAX+2*NRHS)
  119. *> \endverbatim
  120. *>
  121. *> \param[in] NOUT
  122. *> \verbatim
  123. *> NOUT is INTEGER
  124. *> The unit number for output.
  125. *> \endverbatim
  126. *
  127. * Authors:
  128. * ========
  129. *
  130. *> \author Univ. of Tennessee
  131. *> \author Univ. of California Berkeley
  132. *> \author Univ. of Colorado Denver
  133. *> \author NAG Ltd.
  134. *
  135. *> \ingroup complex16_lin
  136. *
  137. * =====================================================================
  138. SUBROUTINE ZDRVPT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, D,
  139. $ E, B, X, XACT, WORK, RWORK, NOUT )
  140. *
  141. * -- LAPACK test routine --
  142. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  143. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  144. *
  145. * .. Scalar Arguments ..
  146. LOGICAL TSTERR
  147. INTEGER NN, NOUT, NRHS
  148. DOUBLE PRECISION THRESH
  149. * ..
  150. * .. Array Arguments ..
  151. LOGICAL DOTYPE( * )
  152. INTEGER NVAL( * )
  153. DOUBLE PRECISION D( * ), RWORK( * )
  154. COMPLEX*16 A( * ), B( * ), E( * ), WORK( * ), X( * ),
  155. $ XACT( * )
  156. * ..
  157. *
  158. * =====================================================================
  159. *
  160. * .. Parameters ..
  161. DOUBLE PRECISION ONE, ZERO
  162. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  163. INTEGER NTYPES
  164. PARAMETER ( NTYPES = 12 )
  165. INTEGER NTESTS
  166. PARAMETER ( NTESTS = 6 )
  167. * ..
  168. * .. Local Scalars ..
  169. LOGICAL ZEROT
  170. CHARACTER DIST, FACT, TYPE
  171. CHARACTER*3 PATH
  172. INTEGER I, IA, IFACT, IMAT, IN, INFO, IX, IZERO, J, K,
  173. $ K1, KL, KU, LDA, MODE, N, NERRS, NFAIL, NIMAT,
  174. $ NRUN, NT
  175. DOUBLE PRECISION AINVNM, ANORM, COND, DMAX, RCOND, RCONDC
  176. * ..
  177. * .. Local Arrays ..
  178. INTEGER ISEED( 4 ), ISEEDY( 4 )
  179. DOUBLE PRECISION RESULT( NTESTS ), Z( 3 )
  180. * ..
  181. * .. External Functions ..
  182. INTEGER IDAMAX
  183. DOUBLE PRECISION DGET06, DZASUM, ZLANHT
  184. EXTERNAL IDAMAX, DGET06, DZASUM, ZLANHT
  185. * ..
  186. * .. External Subroutines ..
  187. EXTERNAL ALADHD, ALAERH, ALASVM, DCOPY, DLARNV, DSCAL,
  188. $ ZCOPY, ZDSCAL, ZERRVX, ZGET04, ZLACPY, ZLAPTM,
  189. $ ZLARNV, ZLASET, ZLATB4, ZLATMS, ZPTSV, ZPTSVX,
  190. $ ZPTT01, ZPTT02, ZPTT05, ZPTTRF, ZPTTRS
  191. * ..
  192. * .. Intrinsic Functions ..
  193. INTRINSIC ABS, DCMPLX, MAX
  194. * ..
  195. * .. Scalars in Common ..
  196. LOGICAL LERR, OK
  197. CHARACTER*32 SRNAMT
  198. INTEGER INFOT, NUNIT
  199. * ..
  200. * .. Common blocks ..
  201. COMMON / INFOC / INFOT, NUNIT, OK, LERR
  202. COMMON / SRNAMC / SRNAMT
  203. * ..
  204. * .. Data statements ..
  205. DATA ISEEDY / 0, 0, 0, 1 /
  206. * ..
  207. * .. Executable Statements ..
  208. *
  209. PATH( 1: 1 ) = 'Zomplex precision'
  210. PATH( 2: 3 ) = 'PT'
  211. NRUN = 0
  212. NFAIL = 0
  213. NERRS = 0
  214. DO 10 I = 1, 4
  215. ISEED( I ) = ISEEDY( I )
  216. 10 CONTINUE
  217. *
  218. * Test the error exits
  219. *
  220. IF( TSTERR )
  221. $ CALL ZERRVX( PATH, NOUT )
  222. INFOT = 0
  223. *
  224. DO 120 IN = 1, NN
  225. *
  226. * Do for each value of N in NVAL.
  227. *
  228. N = NVAL( IN )
  229. LDA = MAX( 1, N )
  230. NIMAT = NTYPES
  231. IF( N.LE.0 )
  232. $ NIMAT = 1
  233. *
  234. DO 110 IMAT = 1, NIMAT
  235. *
  236. * Do the tests only if DOTYPE( IMAT ) is true.
  237. *
  238. IF( N.GT.0 .AND. .NOT.DOTYPE( IMAT ) )
  239. $ GO TO 110
  240. *
  241. * Set up parameters with ZLATB4.
  242. *
  243. CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
  244. $ COND, DIST )
  245. *
  246. ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
  247. IF( IMAT.LE.6 ) THEN
  248. *
  249. * Type 1-6: generate a symmetric tridiagonal matrix of
  250. * known condition number in lower triangular band storage.
  251. *
  252. SRNAMT = 'ZLATMS'
  253. CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
  254. $ ANORM, KL, KU, 'B', A, 2, WORK, INFO )
  255. *
  256. * Check the error code from ZLATMS.
  257. *
  258. IF( INFO.NE.0 ) THEN
  259. CALL ALAERH( PATH, 'ZLATMS', INFO, 0, ' ', N, N, KL,
  260. $ KU, -1, IMAT, NFAIL, NERRS, NOUT )
  261. GO TO 110
  262. END IF
  263. IZERO = 0
  264. *
  265. * Copy the matrix to D and E.
  266. *
  267. IA = 1
  268. DO 20 I = 1, N - 1
  269. D( I ) = DBLE( A( IA ) )
  270. E( I ) = A( IA+1 )
  271. IA = IA + 2
  272. 20 CONTINUE
  273. IF( N.GT.0 )
  274. $ D( N ) = DBLE( A( IA ) )
  275. ELSE
  276. *
  277. * Type 7-12: generate a diagonally dominant matrix with
  278. * unknown condition number in the vectors D and E.
  279. *
  280. IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
  281. *
  282. * Let D and E have values from [-1,1].
  283. *
  284. CALL DLARNV( 2, ISEED, N, D )
  285. CALL ZLARNV( 2, ISEED, N-1, E )
  286. *
  287. * Make the tridiagonal matrix diagonally dominant.
  288. *
  289. IF( N.EQ.1 ) THEN
  290. D( 1 ) = ABS( D( 1 ) )
  291. ELSE
  292. D( 1 ) = ABS( D( 1 ) ) + ABS( E( 1 ) )
  293. D( N ) = ABS( D( N ) ) + ABS( E( N-1 ) )
  294. DO 30 I = 2, N - 1
  295. D( I ) = ABS( D( I ) ) + ABS( E( I ) ) +
  296. $ ABS( E( I-1 ) )
  297. 30 CONTINUE
  298. END IF
  299. *
  300. * Scale D and E so the maximum element is ANORM.
  301. *
  302. IX = IDAMAX( N, D, 1 )
  303. DMAX = D( IX )
  304. CALL DSCAL( N, ANORM / DMAX, D, 1 )
  305. IF( N.GT.1 )
  306. $ CALL ZDSCAL( N-1, ANORM / DMAX, E, 1 )
  307. *
  308. ELSE IF( IZERO.GT.0 ) THEN
  309. *
  310. * Reuse the last matrix by copying back the zeroed out
  311. * elements.
  312. *
  313. IF( IZERO.EQ.1 ) THEN
  314. D( 1 ) = Z( 2 )
  315. IF( N.GT.1 )
  316. $ E( 1 ) = Z( 3 )
  317. ELSE IF( IZERO.EQ.N ) THEN
  318. E( N-1 ) = Z( 1 )
  319. D( N ) = Z( 2 )
  320. ELSE
  321. E( IZERO-1 ) = Z( 1 )
  322. D( IZERO ) = Z( 2 )
  323. E( IZERO ) = Z( 3 )
  324. END IF
  325. END IF
  326. *
  327. * For types 8-10, set one row and column of the matrix to
  328. * zero.
  329. *
  330. IZERO = 0
  331. IF( IMAT.EQ.8 ) THEN
  332. IZERO = 1
  333. Z( 2 ) = D( 1 )
  334. D( 1 ) = ZERO
  335. IF( N.GT.1 ) THEN
  336. Z( 3 ) = DBLE( E( 1 ) )
  337. E( 1 ) = ZERO
  338. END IF
  339. ELSE IF( IMAT.EQ.9 ) THEN
  340. IZERO = N
  341. IF( N.GT.1 ) THEN
  342. Z( 1 ) = DBLE( E( N-1 ) )
  343. E( N-1 ) = ZERO
  344. END IF
  345. Z( 2 ) = D( N )
  346. D( N ) = ZERO
  347. ELSE IF( IMAT.EQ.10 ) THEN
  348. IZERO = ( N+1 ) / 2
  349. IF( IZERO.GT.1 ) THEN
  350. Z( 1 ) = DBLE( E( IZERO-1 ) )
  351. E( IZERO-1 ) = ZERO
  352. Z( 3 ) = DBLE( E( IZERO ) )
  353. E( IZERO ) = ZERO
  354. END IF
  355. Z( 2 ) = D( IZERO )
  356. D( IZERO ) = ZERO
  357. END IF
  358. END IF
  359. *
  360. * Generate NRHS random solution vectors.
  361. *
  362. IX = 1
  363. DO 40 J = 1, NRHS
  364. CALL ZLARNV( 2, ISEED, N, XACT( IX ) )
  365. IX = IX + LDA
  366. 40 CONTINUE
  367. *
  368. * Set the right hand side.
  369. *
  370. CALL ZLAPTM( 'Lower', N, NRHS, ONE, D, E, XACT, LDA, ZERO,
  371. $ B, LDA )
  372. *
  373. DO 100 IFACT = 1, 2
  374. IF( IFACT.EQ.1 ) THEN
  375. FACT = 'F'
  376. ELSE
  377. FACT = 'N'
  378. END IF
  379. *
  380. * Compute the condition number for comparison with
  381. * the value returned by ZPTSVX.
  382. *
  383. IF( ZEROT ) THEN
  384. IF( IFACT.EQ.1 )
  385. $ GO TO 100
  386. RCONDC = ZERO
  387. *
  388. ELSE IF( IFACT.EQ.1 ) THEN
  389. *
  390. * Compute the 1-norm of A.
  391. *
  392. ANORM = ZLANHT( '1', N, D, E )
  393. *
  394. CALL DCOPY( N, D, 1, D( N+1 ), 1 )
  395. IF( N.GT.1 )
  396. $ CALL ZCOPY( N-1, E, 1, E( N+1 ), 1 )
  397. *
  398. * Factor the matrix A.
  399. *
  400. CALL ZPTTRF( N, D( N+1 ), E( N+1 ), INFO )
  401. *
  402. * Use ZPTTRS to solve for one column at a time of
  403. * inv(A), computing the maximum column sum as we go.
  404. *
  405. AINVNM = ZERO
  406. DO 60 I = 1, N
  407. DO 50 J = 1, N
  408. X( J ) = ZERO
  409. 50 CONTINUE
  410. X( I ) = ONE
  411. CALL ZPTTRS( 'Lower', N, 1, D( N+1 ), E( N+1 ), X,
  412. $ LDA, INFO )
  413. AINVNM = MAX( AINVNM, DZASUM( N, X, 1 ) )
  414. 60 CONTINUE
  415. *
  416. * Compute the 1-norm condition number of A.
  417. *
  418. IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
  419. RCONDC = ONE
  420. ELSE
  421. RCONDC = ( ONE / ANORM ) / AINVNM
  422. END IF
  423. END IF
  424. *
  425. IF( IFACT.EQ.2 ) THEN
  426. *
  427. * --- Test ZPTSV --
  428. *
  429. CALL DCOPY( N, D, 1, D( N+1 ), 1 )
  430. IF( N.GT.1 )
  431. $ CALL ZCOPY( N-1, E, 1, E( N+1 ), 1 )
  432. CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
  433. *
  434. * Factor A as L*D*L' and solve the system A*X = B.
  435. *
  436. SRNAMT = 'ZPTSV '
  437. CALL ZPTSV( N, NRHS, D( N+1 ), E( N+1 ), X, LDA,
  438. $ INFO )
  439. *
  440. * Check error code from ZPTSV .
  441. *
  442. IF( INFO.NE.IZERO )
  443. $ CALL ALAERH( PATH, 'ZPTSV ', INFO, IZERO, ' ', N,
  444. $ N, 1, 1, NRHS, IMAT, NFAIL, NERRS,
  445. $ NOUT )
  446. NT = 0
  447. IF( IZERO.EQ.0 ) THEN
  448. *
  449. * Check the factorization by computing the ratio
  450. * norm(L*D*L' - A) / (n * norm(A) * EPS )
  451. *
  452. CALL ZPTT01( N, D, E, D( N+1 ), E( N+1 ), WORK,
  453. $ RESULT( 1 ) )
  454. *
  455. * Compute the residual in the solution.
  456. *
  457. CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
  458. CALL ZPTT02( 'Lower', N, NRHS, D, E, X, LDA, WORK,
  459. $ LDA, RESULT( 2 ) )
  460. *
  461. * Check solution from generated exact solution.
  462. *
  463. CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
  464. $ RESULT( 3 ) )
  465. NT = 3
  466. END IF
  467. *
  468. * Print information about the tests that did not pass
  469. * the threshold.
  470. *
  471. DO 70 K = 1, NT
  472. IF( RESULT( K ).GE.THRESH ) THEN
  473. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  474. $ CALL ALADHD( NOUT, PATH )
  475. WRITE( NOUT, FMT = 9999 )'ZPTSV ', N, IMAT, K,
  476. $ RESULT( K )
  477. NFAIL = NFAIL + 1
  478. END IF
  479. 70 CONTINUE
  480. NRUN = NRUN + NT
  481. END IF
  482. *
  483. * --- Test ZPTSVX ---
  484. *
  485. IF( IFACT.GT.1 ) THEN
  486. *
  487. * Initialize D( N+1:2*N ) and E( N+1:2*N ) to zero.
  488. *
  489. DO 80 I = 1, N - 1
  490. D( N+I ) = ZERO
  491. E( N+I ) = ZERO
  492. 80 CONTINUE
  493. IF( N.GT.0 )
  494. $ D( N+N ) = ZERO
  495. END IF
  496. *
  497. CALL ZLASET( 'Full', N, NRHS, DCMPLX( ZERO ),
  498. $ DCMPLX( ZERO ), X, LDA )
  499. *
  500. * Solve the system and compute the condition number and
  501. * error bounds using ZPTSVX.
  502. *
  503. SRNAMT = 'ZPTSVX'
  504. CALL ZPTSVX( FACT, N, NRHS, D, E, D( N+1 ), E( N+1 ), B,
  505. $ LDA, X, LDA, RCOND, RWORK, RWORK( NRHS+1 ),
  506. $ WORK, RWORK( 2*NRHS+1 ), INFO )
  507. *
  508. * Check the error code from ZPTSVX.
  509. *
  510. IF( INFO.NE.IZERO )
  511. $ CALL ALAERH( PATH, 'ZPTSVX', INFO, IZERO, FACT, N, N,
  512. $ 1, 1, NRHS, IMAT, NFAIL, NERRS, NOUT )
  513. IF( IZERO.EQ.0 ) THEN
  514. IF( IFACT.EQ.2 ) THEN
  515. *
  516. * Check the factorization by computing the ratio
  517. * norm(L*D*L' - A) / (n * norm(A) * EPS )
  518. *
  519. K1 = 1
  520. CALL ZPTT01( N, D, E, D( N+1 ), E( N+1 ), WORK,
  521. $ RESULT( 1 ) )
  522. ELSE
  523. K1 = 2
  524. END IF
  525. *
  526. * Compute the residual in the solution.
  527. *
  528. CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
  529. CALL ZPTT02( 'Lower', N, NRHS, D, E, X, LDA, WORK,
  530. $ LDA, RESULT( 2 ) )
  531. *
  532. * Check solution from generated exact solution.
  533. *
  534. CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
  535. $ RESULT( 3 ) )
  536. *
  537. * Check error bounds from iterative refinement.
  538. *
  539. CALL ZPTT05( N, NRHS, D, E, B, LDA, X, LDA, XACT, LDA,
  540. $ RWORK, RWORK( NRHS+1 ), RESULT( 4 ) )
  541. ELSE
  542. K1 = 6
  543. END IF
  544. *
  545. * Check the reciprocal of the condition number.
  546. *
  547. RESULT( 6 ) = DGET06( RCOND, RCONDC )
  548. *
  549. * Print information about the tests that did not pass
  550. * the threshold.
  551. *
  552. DO 90 K = K1, 6
  553. IF( RESULT( K ).GE.THRESH ) THEN
  554. IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
  555. $ CALL ALADHD( NOUT, PATH )
  556. WRITE( NOUT, FMT = 9998 )'ZPTSVX', FACT, N, IMAT,
  557. $ K, RESULT( K )
  558. NFAIL = NFAIL + 1
  559. END IF
  560. 90 CONTINUE
  561. NRUN = NRUN + 7 - K1
  562. 100 CONTINUE
  563. 110 CONTINUE
  564. 120 CONTINUE
  565. *
  566. * Print a summary of the results.
  567. *
  568. CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
  569. *
  570. 9999 FORMAT( 1X, A, ', N =', I5, ', type ', I2, ', test ', I2,
  571. $ ', ratio = ', G12.5 )
  572. 9998 FORMAT( 1X, A, ', FACT=''', A1, ''', N =', I5, ', type ', I2,
  573. $ ', test ', I2, ', ratio = ', G12.5 )
  574. RETURN
  575. *
  576. * End of ZDRVPT
  577. *
  578. END