You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dbdt05.f 5.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211
  1. *> \brief \b DBDT05
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DBDT05( M, N, A, LDA, S, NS, U, LDU,
  12. * VT, LDVT, WORK, RESID )
  13. *
  14. * .. Scalar Arguments ..
  15. * INTEGER LDA, LDU, LDVT, N, NS
  16. * DOUBLE PRECISION RESID
  17. * ..
  18. * .. Array Arguments ..
  19. * DOUBLE PRECISION D( * ), E( * ), S( * ), U( LDU, * ),
  20. * $ VT( LDVT, * ), WORK( * )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> DBDT05 reconstructs a bidiagonal matrix B from its (partial) SVD:
  30. *> S = U' * B * V
  31. *> where U and V are orthogonal matrices and S is diagonal.
  32. *>
  33. *> The test ratio to test the singular value decomposition is
  34. *> RESID = norm( S - U' * B * V ) / ( n * norm(B) * EPS )
  35. *> where VT = V' and EPS is the machine precision.
  36. *> \endverbatim
  37. *
  38. * Arguments:
  39. * ==========
  40. *
  41. *> \param[in] M
  42. *> \verbatim
  43. *> M is INTEGER
  44. *> The number of rows of the matrices A and U.
  45. *> \endverbatim
  46. *>
  47. *> \param[in] N
  48. *> \verbatim
  49. *> N is INTEGER
  50. *> The number of columns of the matrices A and VT.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] A
  54. *> \verbatim
  55. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  56. *> The m by n matrix A.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] LDA
  60. *> \verbatim
  61. *> LDA is INTEGER
  62. *> The leading dimension of the array A. LDA >= max(1,M).
  63. *> \endverbatim
  64. *>
  65. *> \param[in] S
  66. *> \verbatim
  67. *> S is DOUBLE PRECISION array, dimension (NS)
  68. *> The singular values from the (partial) SVD of B, sorted in
  69. *> decreasing order.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] NS
  73. *> \verbatim
  74. *> NS is INTEGER
  75. *> The number of singular values/vectors from the (partial)
  76. *> SVD of B.
  77. *> \endverbatim
  78. *>
  79. *> \param[in] U
  80. *> \verbatim
  81. *> U is DOUBLE PRECISION array, dimension (LDU,NS)
  82. *> The n by ns orthogonal matrix U in S = U' * B * V.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] LDU
  86. *> \verbatim
  87. *> LDU is INTEGER
  88. *> The leading dimension of the array U. LDU >= max(1,N)
  89. *> \endverbatim
  90. *>
  91. *> \param[in] VT
  92. *> \verbatim
  93. *> VT is DOUBLE PRECISION array, dimension (LDVT,N)
  94. *> The n by ns orthogonal matrix V in S = U' * B * V.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] LDVT
  98. *> \verbatim
  99. *> LDVT is INTEGER
  100. *> The leading dimension of the array VT.
  101. *> \endverbatim
  102. *>
  103. *> \param[out] WORK
  104. *> \verbatim
  105. *> WORK is DOUBLE PRECISION array, dimension (M,N)
  106. *> \endverbatim
  107. *>
  108. *> \param[out] RESID
  109. *> \verbatim
  110. *> RESID is DOUBLE PRECISION
  111. *> The test ratio: norm(S - U' * A * V) / ( n * norm(A) * EPS )
  112. *> \endverbatim
  113. *
  114. * Authors:
  115. * ========
  116. *
  117. *> \author Univ. of Tennessee
  118. *> \author Univ. of California Berkeley
  119. *> \author Univ. of Colorado Denver
  120. *> \author NAG Ltd.
  121. *
  122. *> \ingroup double_eig
  123. *
  124. * =====================================================================
  125. SUBROUTINE DBDT05( M, N, A, LDA, S, NS, U, LDU,
  126. $ VT, LDVT, WORK, RESID )
  127. *
  128. * -- LAPACK test routine --
  129. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  130. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  131. *
  132. * .. Scalar Arguments ..
  133. INTEGER LDA, LDU, LDVT, M, N, NS
  134. DOUBLE PRECISION RESID
  135. * ..
  136. * .. Array Arguments ..
  137. DOUBLE PRECISION A( LDA, * ), S( * ), U( LDU, * ),
  138. $ VT( LDVT, * ), WORK( * )
  139. * ..
  140. *
  141. * ======================================================================
  142. *
  143. * .. Parameters ..
  144. DOUBLE PRECISION ZERO, ONE
  145. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  146. * ..
  147. * .. Local Scalars ..
  148. INTEGER I, J
  149. DOUBLE PRECISION ANORM, EPS
  150. * ..
  151. * .. External Functions ..
  152. LOGICAL LSAME
  153. INTEGER IDAMAX
  154. DOUBLE PRECISION DASUM, DLAMCH, DLANGE
  155. EXTERNAL LSAME, IDAMAX, DASUM, DLAMCH, DLANGE
  156. * ..
  157. * .. External Subroutines ..
  158. EXTERNAL DGEMM
  159. * ..
  160. * .. Intrinsic Functions ..
  161. INTRINSIC ABS, DBLE, MAX, MIN
  162. * ..
  163. * .. Executable Statements ..
  164. *
  165. * Quick return if possible.
  166. *
  167. RESID = ZERO
  168. IF( MIN( M, N ).LE.0 .OR. NS.LE.0 )
  169. $ RETURN
  170. *
  171. EPS = DLAMCH( 'Precision' )
  172. ANORM = DLANGE( 'M', M, N, A, LDA, WORK )
  173. *
  174. * Compute U' * A * V.
  175. *
  176. CALL DGEMM( 'N', 'T', M, NS, N, ONE, A, LDA, VT,
  177. $ LDVT, ZERO, WORK( 1+NS*NS ), M )
  178. CALL DGEMM( 'T', 'N', NS, NS, M, -ONE, U, LDU, WORK( 1+NS*NS ),
  179. $ M, ZERO, WORK, NS )
  180. *
  181. * norm(S - U' * B * V)
  182. *
  183. J = 0
  184. DO 10 I = 1, NS
  185. WORK( J+I ) = WORK( J+I ) + S( I )
  186. RESID = MAX( RESID, DASUM( NS, WORK( J+1 ), 1 ) )
  187. J = J + NS
  188. 10 CONTINUE
  189. *
  190. IF( ANORM.LE.ZERO ) THEN
  191. IF( RESID.NE.ZERO )
  192. $ RESID = ONE / EPS
  193. ELSE
  194. IF( ANORM.GE.RESID ) THEN
  195. RESID = ( RESID / ANORM ) / ( DBLE( N )*EPS )
  196. ELSE
  197. IF( ANORM.LT.ONE ) THEN
  198. RESID = ( MIN( RESID, DBLE( N )*ANORM ) / ANORM ) /
  199. $ ( DBLE( N )*EPS )
  200. ELSE
  201. RESID = MIN( RESID / ANORM, DBLE( N ) ) /
  202. $ ( DBLE( N )*EPS )
  203. END IF
  204. END IF
  205. END IF
  206. *
  207. RETURN
  208. *
  209. * End of DBDT05
  210. *
  211. END