You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhetrs_aa.f 8.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314
  1. *> \brief \b ZHETRS_AA
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZHETRS_AA + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrs_aa.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrs_aa.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrs_aa.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZHETRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
  22. * WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO
  26. * INTEGER N, NRHS, LDA, LDB, LWORK, INFO
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IPIV( * )
  30. * COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
  31. * ..
  32. *
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> ZHETRS_AA solves a system of linear equations A*X = B with a complex
  41. *> hermitian matrix A using the factorization A = U**H*T*U or
  42. *> A = L*T*L**H computed by ZHETRF_AA.
  43. *> \endverbatim
  44. *
  45. * Arguments:
  46. * ==========
  47. *
  48. *> \param[in] UPLO
  49. *> \verbatim
  50. *> UPLO is CHARACTER*1
  51. *> Specifies whether the details of the factorization are stored
  52. *> as an upper or lower triangular matrix.
  53. *> = 'U': Upper triangular, form is A = U**H*T*U;
  54. *> = 'L': Lower triangular, form is A = L*T*L**H.
  55. *> \endverbatim
  56. *>
  57. *> \param[in] N
  58. *> \verbatim
  59. *> N is INTEGER
  60. *> The order of the matrix A. N >= 0.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] NRHS
  64. *> \verbatim
  65. *> NRHS is INTEGER
  66. *> The number of right hand sides, i.e., the number of columns
  67. *> of the matrix B. NRHS >= 0.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] A
  71. *> \verbatim
  72. *> A is COMPLEX*16 array, dimension (LDA,N)
  73. *> Details of factors computed by ZHETRF_AA.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] LDA
  77. *> \verbatim
  78. *> LDA is INTEGER
  79. *> The leading dimension of the array A. LDA >= max(1,N).
  80. *> \endverbatim
  81. *>
  82. *> \param[in] IPIV
  83. *> \verbatim
  84. *> IPIV is INTEGER array, dimension (N)
  85. *> Details of the interchanges as computed by ZHETRF_AA.
  86. *> \endverbatim
  87. *>
  88. *> \param[in,out] B
  89. *> \verbatim
  90. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  91. *> On entry, the right hand side matrix B.
  92. *> On exit, the solution matrix X.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] LDB
  96. *> \verbatim
  97. *> LDB is INTEGER
  98. *> The leading dimension of the array B. LDB >= max(1,N).
  99. *> \endverbatim
  100. *>
  101. *> \param[out] WORK
  102. *> \verbatim
  103. *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LWORK
  107. *> \verbatim
  108. *> LWORK is INTEGER
  109. *> The dimension of the array WORK. LWORK >= max(1,3*N-2).
  110. *> \endverbatim
  111. *>
  112. *> \param[out] INFO
  113. *> \verbatim
  114. *> INFO is INTEGER
  115. *> = 0: successful exit
  116. *> < 0: if INFO = -i, the i-th argument had an illegal value
  117. *> \endverbatim
  118. *
  119. * Authors:
  120. * ========
  121. *
  122. *> \author Univ. of Tennessee
  123. *> \author Univ. of California Berkeley
  124. *> \author Univ. of Colorado Denver
  125. *> \author NAG Ltd.
  126. *
  127. *> \date November 2017
  128. *
  129. *> \ingroup complex16HEcomputational
  130. *
  131. * =====================================================================
  132. SUBROUTINE ZHETRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
  133. $ WORK, LWORK, INFO )
  134. *
  135. * -- LAPACK computational routine (version 3.8.0) --
  136. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  137. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  138. * November 2017
  139. *
  140. IMPLICIT NONE
  141. *
  142. * .. Scalar Arguments ..
  143. CHARACTER UPLO
  144. INTEGER N, NRHS, LDA, LDB, LWORK, INFO
  145. * ..
  146. * .. Array Arguments ..
  147. INTEGER IPIV( * )
  148. COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
  149. * ..
  150. *
  151. * =====================================================================
  152. *
  153. COMPLEX*16 ONE
  154. PARAMETER ( ONE = 1.0D+0 )
  155. * ..
  156. * .. Local Scalars ..
  157. LOGICAL LQUERY, UPPER
  158. INTEGER K, KP, LWKOPT
  159. * ..
  160. * .. External Functions ..
  161. LOGICAL LSAME
  162. EXTERNAL LSAME
  163. * ..
  164. * .. External Subroutines ..
  165. EXTERNAL ZGTSV, ZSWAP, ZTRSM, ZLACGV, ZLACPY, XERBLA
  166. * ..
  167. * .. Intrinsic Functions ..
  168. INTRINSIC MAX
  169. * ..
  170. * .. Executable Statements ..
  171. *
  172. INFO = 0
  173. UPPER = LSAME( UPLO, 'U' )
  174. LQUERY = ( LWORK.EQ.-1 )
  175. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  176. INFO = -1
  177. ELSE IF( N.LT.0 ) THEN
  178. INFO = -2
  179. ELSE IF( NRHS.LT.0 ) THEN
  180. INFO = -3
  181. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  182. INFO = -5
  183. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  184. INFO = -8
  185. ELSE IF( LWORK.LT.MAX( 1, 3*N-2 ) .AND. .NOT.LQUERY ) THEN
  186. INFO = -10
  187. END IF
  188. IF( INFO.NE.0 ) THEN
  189. CALL XERBLA( 'ZHETRS_AA', -INFO )
  190. RETURN
  191. ELSE IF( LQUERY ) THEN
  192. LWKOPT = (3*N-2)
  193. WORK( 1 ) = LWKOPT
  194. RETURN
  195. END IF
  196. *
  197. * Quick return if possible
  198. *
  199. IF( N.EQ.0 .OR. NRHS.EQ.0 )
  200. $ RETURN
  201. *
  202. IF( UPPER ) THEN
  203. *
  204. * Solve A*X = B, where A = U**H*T*U.
  205. *
  206. * 1) Forward substitution with U**H
  207. *
  208. IF( N.GT.1 ) THEN
  209. *
  210. * Pivot, P**T * B -> B
  211. *
  212. DO K = 1, N
  213. KP = IPIV( K )
  214. IF( KP.NE.K )
  215. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  216. END DO
  217. *
  218. * Compute U**H \ B -> B [ (U**H \P**T * B) ]
  219. *
  220. CALL ZTRSM( 'L', 'U', 'C', 'U', N-1, NRHS, ONE, A( 1, 2 ),
  221. $ LDA, B( 2, 1 ), LDB )
  222. END IF
  223. *
  224. * 2) Solve with triangular matrix T
  225. *
  226. * Compute T \ B -> B [ T \ (U**H \P**T * B) ]
  227. *
  228. CALL ZLACPY( 'F', 1, N, A(1, 1), LDA+1, WORK(N), 1 )
  229. IF( N.GT.1 ) THEN
  230. CALL ZLACPY( 'F', 1, N-1, A( 1, 2 ), LDA+1, WORK( 2*N ), 1)
  231. CALL ZLACPY( 'F', 1, N-1, A( 1, 2 ), LDA+1, WORK( 1 ), 1 )
  232. CALL ZLACGV( N-1, WORK( 1 ), 1 )
  233. END IF
  234. CALL ZGTSV( N, NRHS, WORK(1), WORK(N), WORK(2*N), B, LDB,
  235. $ INFO )
  236. *
  237. * 3) Backward substitution with U
  238. *
  239. IF( N.GT.1 ) THEN
  240. *
  241. * Compute U \ B -> B [ U \ (T \ (U**H \P**T * B) ) ]
  242. *
  243. CALL ZTRSM( 'L', 'U', 'N', 'U', N-1, NRHS, ONE, A( 1, 2 ),
  244. $ LDA, B(2, 1), LDB)
  245. *
  246. * Pivot, P * B [ P * (U**H \ (T \ (U \P**T * B) )) ]
  247. *
  248. DO K = N, 1, -1
  249. KP = IPIV( K )
  250. IF( KP.NE.K )
  251. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  252. END DO
  253. END IF
  254. *
  255. ELSE
  256. *
  257. * Solve A*X = B, where A = L*T*L**H.
  258. *
  259. * 1) Forward substitution with L
  260. *
  261. IF( N.GT.1 ) THEN
  262. *
  263. * Pivot, P**T * B -> B
  264. *
  265. DO K = 1, N
  266. KP = IPIV( K )
  267. IF( KP.NE.K )
  268. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  269. END DO
  270. *
  271. * Compute L \ B -> B [ (L \P**T * B) ]
  272. *
  273. CALL ZTRSM( 'L', 'L', 'N', 'U', N-1, NRHS, ONE, A( 2, 1 ),
  274. $ LDA, B(2, 1), LDB)
  275. END IF
  276. *
  277. * 2) Solve with triangular matrix T
  278. *
  279. * Compute T \ B -> B [ T \ (L \P**T * B) ]
  280. *
  281. CALL ZLACPY( 'F', 1, N, A(1, 1), LDA+1, WORK(N), 1)
  282. IF( N.GT.1 ) THEN
  283. CALL ZLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 1 ), 1)
  284. CALL ZLACPY( 'F', 1, N-1, A( 2, 1 ), LDA+1, WORK( 2*N ), 1)
  285. CALL ZLACGV( N-1, WORK( 2*N ), 1 )
  286. END IF
  287. CALL ZGTSV(N, NRHS, WORK(1), WORK(N), WORK(2*N), B, LDB,
  288. $ INFO)
  289. *
  290. * 3) Backward substitution with L**H
  291. *
  292. IF( N.GT.1 ) THEN
  293. *
  294. * Compute L**H \ B -> B [ L**H \ (T \ (L \P**T * B) ) ]
  295. *
  296. CALL ZTRSM( 'L', 'L', 'C', 'U', N-1, NRHS, ONE, A( 2, 1 ),
  297. $ LDA, B( 2, 1 ), LDB)
  298. *
  299. * Pivot, P * B [ P * (L**H \ (T \ (L \P**T * B) )) ]
  300. *
  301. DO K = N, 1, -1
  302. KP = IPIV( K )
  303. IF( KP.NE.K )
  304. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  305. END DO
  306. END IF
  307. *
  308. END IF
  309. *
  310. RETURN
  311. *
  312. * End of ZHETRS_AA
  313. *
  314. END