You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhet01.f 6.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237
  1. *> \brief \b ZHET01
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZHET01( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
  12. * RWORK, RESID )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER UPLO
  16. * INTEGER LDA, LDAFAC, LDC, N
  17. * DOUBLE PRECISION RESID
  18. * ..
  19. * .. Array Arguments ..
  20. * INTEGER IPIV( * )
  21. * DOUBLE PRECISION RWORK( * )
  22. * COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
  23. * ..
  24. *
  25. *
  26. *> \par Purpose:
  27. * =============
  28. *>
  29. *> \verbatim
  30. *>
  31. *> ZHET01 reconstructs a Hermitian indefinite matrix A from its
  32. *> block L*D*L' or U*D*U' factorization and computes the residual
  33. *> norm( C - A ) / ( N * norm(A) * EPS ),
  34. *> where C is the reconstructed matrix, EPS is the machine epsilon,
  35. *> L' is the conjugate transpose of L, and U' is the conjugate transpose
  36. *> of U.
  37. *> \endverbatim
  38. *
  39. * Arguments:
  40. * ==========
  41. *
  42. *> \param[in] UPLO
  43. *> \verbatim
  44. *> UPLO is CHARACTER*1
  45. *> Specifies whether the upper or lower triangular part of the
  46. *> Hermitian matrix A is stored:
  47. *> = 'U': Upper triangular
  48. *> = 'L': Lower triangular
  49. *> \endverbatim
  50. *>
  51. *> \param[in] N
  52. *> \verbatim
  53. *> N is INTEGER
  54. *> The number of rows and columns of the matrix A. N >= 0.
  55. *> \endverbatim
  56. *>
  57. *> \param[in] A
  58. *> \verbatim
  59. *> A is COMPLEX*16 array, dimension (LDA,N)
  60. *> The original Hermitian matrix A.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] LDA
  64. *> \verbatim
  65. *> LDA is INTEGER
  66. *> The leading dimension of the array A. LDA >= max(1,N)
  67. *> \endverbatim
  68. *>
  69. *> \param[in] AFAC
  70. *> \verbatim
  71. *> AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
  72. *> The factored form of the matrix A. AFAC contains the block
  73. *> diagonal matrix D and the multipliers used to obtain the
  74. *> factor L or U from the block L*D*L' or U*D*U' factorization
  75. *> as computed by ZHETRF.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] LDAFAC
  79. *> \verbatim
  80. *> LDAFAC is INTEGER
  81. *> The leading dimension of the array AFAC. LDAFAC >= max(1,N).
  82. *> \endverbatim
  83. *>
  84. *> \param[in] IPIV
  85. *> \verbatim
  86. *> IPIV is INTEGER array, dimension (N)
  87. *> The pivot indices from ZHETRF.
  88. *> \endverbatim
  89. *>
  90. *> \param[out] C
  91. *> \verbatim
  92. *> C is COMPLEX*16 array, dimension (LDC,N)
  93. *> \endverbatim
  94. *>
  95. *> \param[in] LDC
  96. *> \verbatim
  97. *> LDC is INTEGER
  98. *> The leading dimension of the array C. LDC >= max(1,N).
  99. *> \endverbatim
  100. *>
  101. *> \param[out] RWORK
  102. *> \verbatim
  103. *> RWORK is DOUBLE PRECISION array, dimension (N)
  104. *> \endverbatim
  105. *>
  106. *> \param[out] RESID
  107. *> \verbatim
  108. *> RESID is DOUBLE PRECISION
  109. *> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
  110. *> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
  111. *> \endverbatim
  112. *
  113. * Authors:
  114. * ========
  115. *
  116. *> \author Univ. of Tennessee
  117. *> \author Univ. of California Berkeley
  118. *> \author Univ. of Colorado Denver
  119. *> \author NAG Ltd.
  120. *
  121. *> \ingroup complex16_lin
  122. *
  123. * =====================================================================
  124. SUBROUTINE ZHET01( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
  125. $ RWORK, RESID )
  126. *
  127. * -- LAPACK test routine --
  128. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  129. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  130. *
  131. * .. Scalar Arguments ..
  132. CHARACTER UPLO
  133. INTEGER LDA, LDAFAC, LDC, N
  134. DOUBLE PRECISION RESID
  135. * ..
  136. * .. Array Arguments ..
  137. INTEGER IPIV( * )
  138. DOUBLE PRECISION RWORK( * )
  139. COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
  140. * ..
  141. *
  142. * =====================================================================
  143. *
  144. * .. Parameters ..
  145. DOUBLE PRECISION ZERO, ONE
  146. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  147. COMPLEX*16 CZERO, CONE
  148. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
  149. $ CONE = ( 1.0D+0, 0.0D+0 ) )
  150. * ..
  151. * .. Local Scalars ..
  152. INTEGER I, INFO, J
  153. DOUBLE PRECISION ANORM, EPS
  154. * ..
  155. * .. External Functions ..
  156. LOGICAL LSAME
  157. DOUBLE PRECISION DLAMCH, ZLANHE
  158. EXTERNAL LSAME, DLAMCH, ZLANHE
  159. * ..
  160. * .. External Subroutines ..
  161. EXTERNAL ZLASET, ZLAVHE
  162. * ..
  163. * .. Intrinsic Functions ..
  164. INTRINSIC DBLE, DIMAG
  165. * ..
  166. * .. Executable Statements ..
  167. *
  168. * Quick exit if N = 0.
  169. *
  170. IF( N.LE.0 ) THEN
  171. RESID = ZERO
  172. RETURN
  173. END IF
  174. *
  175. * Determine EPS and the norm of A.
  176. *
  177. EPS = DLAMCH( 'Epsilon' )
  178. ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
  179. *
  180. * Check the imaginary parts of the diagonal elements and return with
  181. * an error code if any are nonzero.
  182. *
  183. DO 10 J = 1, N
  184. IF( DIMAG( AFAC( J, J ) ).NE.ZERO ) THEN
  185. RESID = ONE / EPS
  186. RETURN
  187. END IF
  188. 10 CONTINUE
  189. *
  190. * Initialize C to the identity matrix.
  191. *
  192. CALL ZLASET( 'Full', N, N, CZERO, CONE, C, LDC )
  193. *
  194. * Call ZLAVHE to form the product D * U' (or D * L' ).
  195. *
  196. CALL ZLAVHE( UPLO, 'Conjugate', 'Non-unit', N, N, AFAC, LDAFAC,
  197. $ IPIV, C, LDC, INFO )
  198. *
  199. * Call ZLAVHE again to multiply by U (or L ).
  200. *
  201. CALL ZLAVHE( UPLO, 'No transpose', 'Unit', N, N, AFAC, LDAFAC,
  202. $ IPIV, C, LDC, INFO )
  203. *
  204. * Compute the difference C - A .
  205. *
  206. IF( LSAME( UPLO, 'U' ) ) THEN
  207. DO 30 J = 1, N
  208. DO 20 I = 1, J - 1
  209. C( I, J ) = C( I, J ) - A( I, J )
  210. 20 CONTINUE
  211. C( J, J ) = C( J, J ) - DBLE( A( J, J ) )
  212. 30 CONTINUE
  213. ELSE
  214. DO 50 J = 1, N
  215. C( J, J ) = C( J, J ) - DBLE( A( J, J ) )
  216. DO 40 I = J + 1, N
  217. C( I, J ) = C( I, J ) - A( I, J )
  218. 40 CONTINUE
  219. 50 CONTINUE
  220. END IF
  221. *
  222. * Compute norm( C - A ) / ( N * norm(A) * EPS )
  223. *
  224. RESID = ZLANHE( '1', UPLO, N, C, LDC, RWORK )
  225. *
  226. IF( ANORM.LE.ZERO ) THEN
  227. IF( RESID.NE.ZERO )
  228. $ RESID = ONE / EPS
  229. ELSE
  230. RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
  231. END IF
  232. *
  233. RETURN
  234. *
  235. * End of ZHET01
  236. *
  237. END