You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chetrf_aa.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477
  1. *> \brief \b CHETRF_AA
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CHETRF_AA + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetrf_aa.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetrf_aa.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetrf_aa.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER N, LDA, LWORK, INFO
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX A( LDA, * ), WORK( * )
  30. * ..
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> CHETRF_AA computes the factorization of a complex hermitian matrix A
  38. *> using the Aasen's algorithm. The form of the factorization is
  39. *>
  40. *> A = U**H*T*U or A = L*T*L**H
  41. *>
  42. *> where U (or L) is a product of permutation and unit upper (lower)
  43. *> triangular matrices, and T is a hermitian tridiagonal matrix.
  44. *>
  45. *> This is the blocked version of the algorithm, calling Level 3 BLAS.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> = 'U': Upper triangle of A is stored;
  55. *> = 'L': Lower triangle of A is stored.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in,out] A
  65. *> \verbatim
  66. *> A is COMPLEX array, dimension (LDA,N)
  67. *> On entry, the hermitian matrix A. If UPLO = 'U', the leading
  68. *> N-by-N upper triangular part of A contains the upper
  69. *> triangular part of the matrix A, and the strictly lower
  70. *> triangular part of A is not referenced. If UPLO = 'L', the
  71. *> leading N-by-N lower triangular part of A contains the lower
  72. *> triangular part of the matrix A, and the strictly upper
  73. *> triangular part of A is not referenced.
  74. *>
  75. *> On exit, the tridiagonal matrix is stored in the diagonals
  76. *> and the subdiagonals of A just below (or above) the diagonals,
  77. *> and L is stored below (or above) the subdiagonals, when UPLO
  78. *> is 'L' (or 'U').
  79. *> \endverbatim
  80. *>
  81. *> \param[in] LDA
  82. *> \verbatim
  83. *> LDA is INTEGER
  84. *> The leading dimension of the array A. LDA >= max(1,N).
  85. *> \endverbatim
  86. *>
  87. *> \param[out] IPIV
  88. *> \verbatim
  89. *> IPIV is INTEGER array, dimension (N)
  90. *> On exit, it contains the details of the interchanges, i.e.,
  91. *> the row and column k of A were interchanged with the
  92. *> row and column IPIV(k).
  93. *> \endverbatim
  94. *>
  95. *> \param[out] WORK
  96. *> \verbatim
  97. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  98. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] LWORK
  102. *> \verbatim
  103. *> LWORK is INTEGER
  104. *> The length of WORK.
  105. *> LWORK >= 1, if N <= 1, and LWORK >= 2*N, otherwise.
  106. *> For optimum performance LWORK >= N*(1+NB), where NB is
  107. *> the optimal blocksize, returned by ILAENV.
  108. *>
  109. *> If LWORK = -1, then a workspace query is assumed; the routine
  110. *> only calculates the optimal size of the WORK array, returns
  111. *> this value as the first entry of the WORK array, and no error
  112. *> message related to LWORK is issued by XERBLA.
  113. *> \endverbatim
  114. *>
  115. *> \param[out] INFO
  116. *> \verbatim
  117. *> INFO is INTEGER
  118. *> = 0: successful exit
  119. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  120. *> \endverbatim
  121. *
  122. * Authors:
  123. * ========
  124. *
  125. *> \author Univ. of Tennessee
  126. *> \author Univ. of California Berkeley
  127. *> \author Univ. of Colorado Denver
  128. *> \author NAG Ltd.
  129. *
  130. *> \ingroup hetrf_aa
  131. *
  132. * =====================================================================
  133. SUBROUTINE CHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
  134. *
  135. * -- LAPACK computational routine --
  136. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  137. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  138. *
  139. IMPLICIT NONE
  140. *
  141. * .. Scalar Arguments ..
  142. CHARACTER UPLO
  143. INTEGER N, LDA, LWORK, INFO
  144. * ..
  145. * .. Array Arguments ..
  146. INTEGER IPIV( * )
  147. COMPLEX A( LDA, * ), WORK( * )
  148. * ..
  149. *
  150. * =====================================================================
  151. * .. Parameters ..
  152. COMPLEX ZERO, ONE
  153. PARAMETER ( ZERO = (0.0E+0, 0.0E+0), ONE = (1.0E+0, 0.0E+0) )
  154. *
  155. * .. Local Scalars ..
  156. LOGICAL LQUERY, UPPER
  157. INTEGER J, LWKMIN, LWKOPT
  158. INTEGER NB, MJ, NJ, K1, K2, J1, J2, J3, JB
  159. COMPLEX ALPHA
  160. * ..
  161. * .. External Functions ..
  162. LOGICAL LSAME
  163. INTEGER ILAENV
  164. REAL SROUNDUP_LWORK
  165. EXTERNAL LSAME, ILAENV, SROUNDUP_LWORK
  166. * ..
  167. * .. External Subroutines ..
  168. EXTERNAL CLAHEF_AA, CGEMM, CCOPY, CSWAP, CSCAL, XERBLA
  169. * ..
  170. * .. Intrinsic Functions ..
  171. INTRINSIC REAL, CONJG, MAX
  172. * ..
  173. * .. Executable Statements ..
  174. *
  175. * Determine the block size
  176. *
  177. NB = ILAENV( 1, 'CHETRF_AA', UPLO, N, -1, -1, -1 )
  178. *
  179. * Test the input parameters.
  180. *
  181. INFO = 0
  182. UPPER = LSAME( UPLO, 'U' )
  183. LQUERY = ( LWORK.EQ.-1 )
  184. IF( N.LE.1 ) THEN
  185. LWKMIN = 1
  186. LWKOPT = 1
  187. ELSE
  188. LWKMIN = 2*N
  189. LWKOPT = (NB+1)*N
  190. END IF
  191. *
  192. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  193. INFO = -1
  194. ELSE IF( N.LT.0 ) THEN
  195. INFO = -2
  196. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  197. INFO = -4
  198. ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
  199. INFO = -7
  200. END IF
  201. *
  202. IF( INFO.EQ.0 ) THEN
  203. WORK( 1 ) = SROUNDUP_LWORK( LWKOPT )
  204. END IF
  205. *
  206. IF( INFO.NE.0 ) THEN
  207. CALL XERBLA( 'CHETRF_AA', -INFO )
  208. RETURN
  209. ELSE IF( LQUERY ) THEN
  210. RETURN
  211. END IF
  212. *
  213. * Quick return
  214. *
  215. IF( N.EQ.0 ) THEN
  216. RETURN
  217. ENDIF
  218. IPIV( 1 ) = 1
  219. IF( N.EQ.1 ) THEN
  220. A( 1, 1 ) = REAL( A( 1, 1 ) )
  221. RETURN
  222. END IF
  223. *
  224. * Adjust block size based on the workspace size
  225. *
  226. IF( LWORK.LT.((1+NB)*N) ) THEN
  227. NB = ( LWORK-N ) / N
  228. END IF
  229. *
  230. IF( UPPER ) THEN
  231. *
  232. * .....................................................
  233. * Factorize A as U**H*D*U using the upper triangle of A
  234. * .....................................................
  235. *
  236. * copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N))
  237. *
  238. CALL CCOPY( N, A( 1, 1 ), LDA, WORK( 1 ), 1 )
  239. *
  240. * J is the main loop index, increasing from 1 to N in steps of
  241. * JB, where JB is the number of columns factorized by CLAHEF;
  242. * JB is either NB, or N-J+1 for the last block
  243. *
  244. J = 0
  245. 10 CONTINUE
  246. IF( J.GE.N )
  247. $ GO TO 20
  248. *
  249. * each step of the main loop
  250. * J is the last column of the previous panel
  251. * J1 is the first column of the current panel
  252. * K1 identifies if the previous column of the panel has been
  253. * explicitly stored, e.g., K1=1 for the first panel, and
  254. * K1=0 for the rest
  255. *
  256. J1 = J + 1
  257. JB = MIN( N-J1+1, NB )
  258. K1 = MAX(1, J)-J
  259. *
  260. * Panel factorization
  261. *
  262. CALL CLAHEF_AA( UPLO, 2-K1, N-J, JB,
  263. $ A( MAX(1, J), J+1 ), LDA,
  264. $ IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
  265. *
  266. * Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot)
  267. *
  268. DO J2 = J+2, MIN(N, J+JB+1)
  269. IPIV( J2 ) = IPIV( J2 ) + J
  270. IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
  271. CALL CSWAP( J1-K1-2, A( 1, J2 ), 1,
  272. $ A( 1, IPIV(J2) ), 1 )
  273. END IF
  274. END DO
  275. J = J + JB
  276. *
  277. * Trailing submatrix update, where
  278. * the row A(J1-1, J2-1:N) stores U(J1, J2+1:N) and
  279. * WORK stores the current block of the auxiriarly matrix H
  280. *
  281. IF( J.LT.N ) THEN
  282. *
  283. * if the first panel and JB=1 (NB=1), then nothing to do
  284. *
  285. IF( J1.GT.1 .OR. JB.GT.1 ) THEN
  286. *
  287. * Merge rank-1 update with BLAS-3 update
  288. *
  289. ALPHA = CONJG( A( J, J+1 ) )
  290. A( J, J+1 ) = ONE
  291. CALL CCOPY( N-J, A( J-1, J+1 ), LDA,
  292. $ WORK( (J+1-J1+1)+JB*N ), 1 )
  293. CALL CSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
  294. *
  295. * K1 identifies if the previous column of the panel has been
  296. * explicitly stored, e.g., K1=0 and K2=1 for the first panel,
  297. * and K1=1 and K2=0 for the rest
  298. *
  299. IF( J1.GT.1 ) THEN
  300. *
  301. * Not first panel
  302. *
  303. K2 = 1
  304. ELSE
  305. *
  306. * First panel
  307. *
  308. K2 = 0
  309. *
  310. * First update skips the first column
  311. *
  312. JB = JB - 1
  313. END IF
  314. *
  315. DO J2 = J+1, N, NB
  316. NJ = MIN( NB, N-J2+1 )
  317. *
  318. * Update (J2, J2) diagonal block with CGEMV
  319. *
  320. J3 = J2
  321. DO MJ = NJ-1, 1, -1
  322. CALL CGEMM( 'Conjugate transpose', 'Transpose',
  323. $ 1, MJ, JB+1,
  324. $ -ONE, A( J1-K2, J3 ), LDA,
  325. $ WORK( (J3-J1+1)+K1*N ), N,
  326. $ ONE, A( J3, J3 ), LDA )
  327. J3 = J3 + 1
  328. END DO
  329. *
  330. * Update off-diagonal block of J2-th block row with CGEMM
  331. *
  332. CALL CGEMM( 'Conjugate transpose', 'Transpose',
  333. $ NJ, N-J3+1, JB+1,
  334. $ -ONE, A( J1-K2, J2 ), LDA,
  335. $ WORK( (J3-J1+1)+K1*N ), N,
  336. $ ONE, A( J2, J3 ), LDA )
  337. END DO
  338. *
  339. * Recover T( J, J+1 )
  340. *
  341. A( J, J+1 ) = CONJG( ALPHA )
  342. END IF
  343. *
  344. * WORK(J+1, 1) stores H(J+1, 1)
  345. *
  346. CALL CCOPY( N-J, A( J+1, J+1 ), LDA, WORK( 1 ), 1 )
  347. END IF
  348. GO TO 10
  349. ELSE
  350. *
  351. * .....................................................
  352. * Factorize A as L*D*L**H using the lower triangle of A
  353. * .....................................................
  354. *
  355. * copy first column A(1:N, 1) into H(1:N, 1)
  356. * (stored in WORK(1:N))
  357. *
  358. CALL CCOPY( N, A( 1, 1 ), 1, WORK( 1 ), 1 )
  359. *
  360. * J is the main loop index, increasing from 1 to N in steps of
  361. * JB, where JB is the number of columns factorized by CLAHEF;
  362. * JB is either NB, or N-J+1 for the last block
  363. *
  364. J = 0
  365. 11 CONTINUE
  366. IF( J.GE.N )
  367. $ GO TO 20
  368. *
  369. * each step of the main loop
  370. * J is the last column of the previous panel
  371. * J1 is the first column of the current panel
  372. * K1 identifies if the previous column of the panel has been
  373. * explicitly stored, e.g., K1=1 for the first panel, and
  374. * K1=0 for the rest
  375. *
  376. J1 = J+1
  377. JB = MIN( N-J1+1, NB )
  378. K1 = MAX(1, J)-J
  379. *
  380. * Panel factorization
  381. *
  382. CALL CLAHEF_AA( UPLO, 2-K1, N-J, JB,
  383. $ A( J+1, MAX(1, J) ), LDA,
  384. $ IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
  385. *
  386. * Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot)
  387. *
  388. DO J2 = J+2, MIN(N, J+JB+1)
  389. IPIV( J2 ) = IPIV( J2 ) + J
  390. IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
  391. CALL CSWAP( J1-K1-2, A( J2, 1 ), LDA,
  392. $ A( IPIV(J2), 1 ), LDA )
  393. END IF
  394. END DO
  395. J = J + JB
  396. *
  397. * Trailing submatrix update, where
  398. * A(J2+1, J1-1) stores L(J2+1, J1) and
  399. * WORK(J2+1, 1) stores H(J2+1, 1)
  400. *
  401. IF( J.LT.N ) THEN
  402. *
  403. * if the first panel and JB=1 (NB=1), then nothing to do
  404. *
  405. IF( J1.GT.1 .OR. JB.GT.1 ) THEN
  406. *
  407. * Merge rank-1 update with BLAS-3 update
  408. *
  409. ALPHA = CONJG( A( J+1, J ) )
  410. A( J+1, J ) = ONE
  411. CALL CCOPY( N-J, A( J+1, J-1 ), 1,
  412. $ WORK( (J+1-J1+1)+JB*N ), 1 )
  413. CALL CSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
  414. *
  415. * K1 identifies if the previous column of the panel has been
  416. * explicitly stored, e.g., K1=0 and K2=1 for the first panel,
  417. * and K1=1 and K2=0 for the rest
  418. *
  419. IF( J1.GT.1 ) THEN
  420. *
  421. * Not first panel
  422. *
  423. K2 = 1
  424. ELSE
  425. *
  426. * First panel
  427. *
  428. K2 = 0
  429. *
  430. * First update skips the first column
  431. *
  432. JB = JB - 1
  433. END IF
  434. *
  435. DO J2 = J+1, N, NB
  436. NJ = MIN( NB, N-J2+1 )
  437. *
  438. * Update (J2, J2) diagonal block with CGEMV
  439. *
  440. J3 = J2
  441. DO MJ = NJ-1, 1, -1
  442. CALL CGEMM( 'No transpose', 'Conjugate transpose',
  443. $ MJ, 1, JB+1,
  444. $ -ONE, WORK( (J3-J1+1)+K1*N ), N,
  445. $ A( J3, J1-K2 ), LDA,
  446. $ ONE, A( J3, J3 ), LDA )
  447. J3 = J3 + 1
  448. END DO
  449. *
  450. * Update off-diagonal block of J2-th block column with CGEMM
  451. *
  452. CALL CGEMM( 'No transpose', 'Conjugate transpose',
  453. $ N-J3+1, NJ, JB+1,
  454. $ -ONE, WORK( (J3-J1+1)+K1*N ), N,
  455. $ A( J2, J1-K2 ), LDA,
  456. $ ONE, A( J3, J2 ), LDA )
  457. END DO
  458. *
  459. * Recover T( J+1, J )
  460. *
  461. A( J+1, J ) = CONJG( ALPHA )
  462. END IF
  463. *
  464. * WORK(J+1, 1) stores H(J+1, 1)
  465. *
  466. CALL CCOPY( N-J, A( J+1, J+1 ), 1, WORK( 1 ), 1 )
  467. END IF
  468. GO TO 11
  469. END IF
  470. *
  471. 20 CONTINUE
  472. WORK( 1 ) = SROUNDUP_LWORK( LWKOPT )
  473. RETURN
  474. *
  475. * End of CHETRF_AA
  476. *
  477. END