You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dpotrf.f 6.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237
  1. C> \brief \b DPOTRF VARIANT: top-looking block version of the algorithm, calling Level 3 BLAS.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DPOTRF ( UPLO, N, A, LDA, INFO )
  12. *
  13. * .. Scalar Arguments ..
  14. * CHARACTER UPLO
  15. * INTEGER INFO, LDA, N
  16. * ..
  17. * .. Array Arguments ..
  18. * DOUBLE PRECISION A( LDA, * )
  19. * ..
  20. *
  21. * Purpose
  22. * =======
  23. *
  24. C>\details \b Purpose:
  25. C>\verbatim
  26. C>
  27. C> DPOTRF computes the Cholesky factorization of a real symmetric
  28. C> positive definite matrix A.
  29. C>
  30. C> The factorization has the form
  31. C> A = U**T * U, if UPLO = 'U', or
  32. C> A = L * L**T, if UPLO = 'L',
  33. C> where U is an upper triangular matrix and L is lower triangular.
  34. C>
  35. C> This is the top-looking block version of the algorithm, calling Level 3 BLAS.
  36. C>
  37. C>\endverbatim
  38. *
  39. * Arguments:
  40. * ==========
  41. *
  42. C> \param[in] UPLO
  43. C> \verbatim
  44. C> UPLO is CHARACTER*1
  45. C> = 'U': Upper triangle of A is stored;
  46. C> = 'L': Lower triangle of A is stored.
  47. C> \endverbatim
  48. C>
  49. C> \param[in] N
  50. C> \verbatim
  51. C> N is INTEGER
  52. C> The order of the matrix A. N >= 0.
  53. C> \endverbatim
  54. C>
  55. C> \param[in,out] A
  56. C> \verbatim
  57. C> A is DOUBLE PRECISION array, dimension (LDA,N)
  58. C> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  59. C> N-by-N upper triangular part of A contains the upper
  60. C> triangular part of the matrix A, and the strictly lower
  61. C> triangular part of A is not referenced. If UPLO = 'L', the
  62. C> leading N-by-N lower triangular part of A contains the lower
  63. C> triangular part of the matrix A, and the strictly upper
  64. C> triangular part of A is not referenced.
  65. C> \endverbatim
  66. C> \verbatim
  67. C> On exit, if INFO = 0, the factor U or L from the Cholesky
  68. C> factorization A = U**T*U or A = L*L**T.
  69. C> \endverbatim
  70. C>
  71. C> \param[in] LDA
  72. C> \verbatim
  73. C> LDA is INTEGER
  74. C> The leading dimension of the array A. LDA >= max(1,N).
  75. C> \endverbatim
  76. C>
  77. C> \param[out] INFO
  78. C> \verbatim
  79. C> INFO is INTEGER
  80. C> = 0: successful exit
  81. C> < 0: if INFO = -i, the i-th argument had an illegal value
  82. C> > 0: if INFO = i, the leading principal minor of order i
  83. C> is not positive, and the factorization could not be
  84. C> completed.
  85. C> \endverbatim
  86. C>
  87. *
  88. * Authors:
  89. * ========
  90. *
  91. C> \author Univ. of Tennessee
  92. C> \author Univ. of California Berkeley
  93. C> \author Univ. of Colorado Denver
  94. C> \author NAG Ltd.
  95. *
  96. C> \date December 2016
  97. *
  98. C> \ingroup variantsPOcomputational
  99. *
  100. * =====================================================================
  101. SUBROUTINE DPOTRF ( UPLO, N, A, LDA, INFO )
  102. *
  103. * -- LAPACK computational routine --
  104. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  105. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  106. *
  107. * .. Scalar Arguments ..
  108. CHARACTER UPLO
  109. INTEGER INFO, LDA, N
  110. * ..
  111. * .. Array Arguments ..
  112. DOUBLE PRECISION A( LDA, * )
  113. * ..
  114. *
  115. * =====================================================================
  116. *
  117. * .. Parameters ..
  118. DOUBLE PRECISION ONE
  119. PARAMETER ( ONE = 1.0D+0 )
  120. * ..
  121. * .. Local Scalars ..
  122. LOGICAL UPPER
  123. INTEGER J, JB, NB
  124. * ..
  125. * .. External Functions ..
  126. LOGICAL LSAME
  127. INTEGER ILAENV
  128. EXTERNAL LSAME, ILAENV
  129. * ..
  130. * .. External Subroutines ..
  131. EXTERNAL DGEMM, DPOTF2, DSYRK, DTRSM, XERBLA
  132. * ..
  133. * .. Intrinsic Functions ..
  134. INTRINSIC MAX, MIN
  135. * ..
  136. * .. Executable Statements ..
  137. *
  138. * Test the input parameters.
  139. *
  140. INFO = 0
  141. UPPER = LSAME( UPLO, 'U' )
  142. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  143. INFO = -1
  144. ELSE IF( N.LT.0 ) THEN
  145. INFO = -2
  146. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  147. INFO = -4
  148. END IF
  149. IF( INFO.NE.0 ) THEN
  150. CALL XERBLA( 'DPOTRF', -INFO )
  151. RETURN
  152. END IF
  153. *
  154. * Quick return if possible
  155. *
  156. IF( N.EQ.0 )
  157. $ RETURN
  158. *
  159. * Determine the block size for this environment.
  160. *
  161. NB = ILAENV( 1, 'DPOTRF', UPLO, N, -1, -1, -1 )
  162. IF( NB.LE.1 .OR. NB.GE.N ) THEN
  163. *
  164. * Use unblocked code.
  165. *
  166. CALL DPOTF2( UPLO, N, A, LDA, INFO )
  167. ELSE
  168. *
  169. * Use blocked code.
  170. *
  171. IF( UPPER ) THEN
  172. *
  173. * Compute the Cholesky factorization A = U'*U.
  174. *
  175. DO 10 J = 1, N, NB
  176. JB = MIN( NB, N-J+1 )
  177. *
  178. * Compute the current block.
  179. *
  180. CALL DTRSM( 'Left', 'Upper', 'Transpose', 'Non-unit',
  181. $ J-1, JB, ONE, A( 1, 1 ), LDA,
  182. $ A( 1, J ), LDA )
  183. CALL DSYRK( 'Upper', 'Transpose', JB, J-1, -ONE,
  184. $ A( 1, J ), LDA,
  185. $ ONE, A( J, J ), LDA )
  186. *
  187. * Update and factorize the current diagonal block and test
  188. * for non-positive-definiteness.
  189. *
  190. CALL DPOTF2( 'Upper', JB, A( J, J ), LDA, INFO )
  191. IF( INFO.NE.0 )
  192. $ GO TO 30
  193. 10 CONTINUE
  194. *
  195. ELSE
  196. *
  197. * Compute the Cholesky factorization A = L*L'.
  198. *
  199. DO 20 J = 1, N, NB
  200. JB = MIN( NB, N-J+1 )
  201. *
  202. * Compute the current block.
  203. *
  204. CALL DTRSM( 'Right', 'Lower', 'Transpose', 'Non-unit',
  205. $ JB, J-1, ONE, A( 1, 1 ), LDA,
  206. $ A( J, 1 ), LDA )
  207. CALL DSYRK( 'Lower', 'No Transpose', JB, J-1,
  208. $ -ONE, A( J, 1 ), LDA,
  209. $ ONE, A( J, J ), LDA )
  210. *
  211. * Update and factorize the current diagonal block and test
  212. * for non-positive-definiteness.
  213. *
  214. CALL DPOTF2( 'Lower', JB, A( J, J ), LDA, INFO )
  215. IF( INFO.NE.0 )
  216. $ GO TO 30
  217. 20 CONTINUE
  218. END IF
  219. END IF
  220. GO TO 40
  221. *
  222. 30 CONTINUE
  223. INFO = INFO + J - 1
  224. *
  225. 40 CONTINUE
  226. RETURN
  227. *
  228. * End of DPOTRF
  229. *
  230. END