You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zuncsd2by1.f 27 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756
  1. *> \brief \b ZUNCSD2BY1
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZUNCSD2BY1 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zuncsd2by1.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zuncsd2by1.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zuncsd2by1.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  22. * X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  23. * LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK,
  24. * INFO )
  25. *
  26. * .. Scalar Arguments ..
  27. * CHARACTER JOBU1, JOBU2, JOBV1T
  28. * INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  29. * $ M, P, Q
  30. * INTEGER LRWORK, LRWORKMIN, LRWORKOPT
  31. * ..
  32. * .. Array Arguments ..
  33. * DOUBLE PRECISION RWORK(*)
  34. * DOUBLE PRECISION THETA(*)
  35. * COMPLEX*16 U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  36. * $ X11(LDX11,*), X21(LDX21,*)
  37. * INTEGER IWORK(*)
  38. * ..
  39. *
  40. *
  41. *> \par Purpose:
  42. *> =============
  43. *>
  44. *>\verbatim
  45. *>
  46. *> ZUNCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with
  47. *> orthonormal columns that has been partitioned into a 2-by-1 block
  48. *> structure:
  49. *>
  50. *> [ I 0 0 ]
  51. *> [ 0 C 0 ]
  52. *> [ X11 ] [ U1 | ] [ 0 0 0 ]
  53. *> X = [-----] = [---------] [----------] V1**T .
  54. *> [ X21 ] [ | U2 ] [ 0 0 0 ]
  55. *> [ 0 S 0 ]
  56. *> [ 0 0 I ]
  57. *>
  58. *> X11 is P-by-Q. The unitary matrices U1, U2, V1, and V2 are P-by-P,
  59. *> (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are
  60. *> R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in
  61. *> which R = MIN(P,M-P,Q,M-Q).
  62. *>
  63. *>\endverbatim
  64. *
  65. * Arguments:
  66. * ==========
  67. *
  68. *> \param[in] JOBU1
  69. *> \verbatim
  70. *> JOBU1 is CHARACTER
  71. *> = 'Y': U1 is computed;
  72. *> otherwise: U1 is not computed.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] JOBU2
  76. *> \verbatim
  77. *> JOBU2 is CHARACTER
  78. *> = 'Y': U2 is computed;
  79. *> otherwise: U2 is not computed.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] JOBV1T
  83. *> \verbatim
  84. *> JOBV1T is CHARACTER
  85. *> = 'Y': V1T is computed;
  86. *> otherwise: V1T is not computed.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] M
  90. *> \verbatim
  91. *> M is INTEGER
  92. *> The number of rows and columns in X.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] P
  96. *> \verbatim
  97. *> P is INTEGER
  98. *> The number of rows in X11 and X12. 0 <= P <= M.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] Q
  102. *> \verbatim
  103. *> Q is INTEGER
  104. *> The number of columns in X11 and X21. 0 <= Q <= M.
  105. *> \endverbatim
  106. *>
  107. *> \param[in,out] X11
  108. *> \verbatim
  109. *> X11 is COMPLEX*16 array, dimension (LDX11,Q)
  110. *> On entry, part of the unitary matrix whose CSD is
  111. *> desired.
  112. *> \endverbatim
  113. *>
  114. *> \param[in] LDX11
  115. *> \verbatim
  116. *> LDX11 is INTEGER
  117. *> The leading dimension of X11. LDX11 >= MAX(1,P).
  118. *> \endverbatim
  119. *>
  120. *> \param[in,out] X21
  121. *> \verbatim
  122. *> X21 is COMPLEX*16 array, dimension (LDX21,Q)
  123. *> On entry, part of the unitary matrix whose CSD is
  124. *> desired.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] LDX21
  128. *> \verbatim
  129. *> LDX21 is INTEGER
  130. *> The leading dimension of X21. LDX21 >= MAX(1,M-P).
  131. *> \endverbatim
  132. *>
  133. *> \param[out] THETA
  134. *> \verbatim
  135. *> THETA is COMPLEX*16 array, dimension (R), in which R =
  136. *> MIN(P,M-P,Q,M-Q).
  137. *> C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
  138. *> S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
  139. *> \endverbatim
  140. *>
  141. *> \param[out] U1
  142. *> \verbatim
  143. *> U1 is COMPLEX*16 array, dimension (P)
  144. *> If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
  145. *> \endverbatim
  146. *>
  147. *> \param[in] LDU1
  148. *> \verbatim
  149. *> LDU1 is INTEGER
  150. *> The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
  151. *> MAX(1,P).
  152. *> \endverbatim
  153. *>
  154. *> \param[out] U2
  155. *> \verbatim
  156. *> U2 is COMPLEX*16 array, dimension (M-P)
  157. *> If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary
  158. *> matrix U2.
  159. *> \endverbatim
  160. *>
  161. *> \param[in] LDU2
  162. *> \verbatim
  163. *> LDU2 is INTEGER
  164. *> The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
  165. *> MAX(1,M-P).
  166. *> \endverbatim
  167. *>
  168. *> \param[out] V1T
  169. *> \verbatim
  170. *> V1T is COMPLEX*16 array, dimension (Q)
  171. *> If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary
  172. *> matrix V1**T.
  173. *> \endverbatim
  174. *>
  175. *> \param[in] LDV1T
  176. *> \verbatim
  177. *> LDV1T is INTEGER
  178. *> The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
  179. *> MAX(1,Q).
  180. *> \endverbatim
  181. *>
  182. *> \param[out] WORK
  183. *> \verbatim
  184. *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
  185. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  186. *> If INFO > 0 on exit, WORK(2:R) contains the values PHI(1),
  187. *> ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
  188. *> define the matrix in intermediate bidiagonal-block form
  189. *> remaining after nonconvergence. INFO specifies the number
  190. *> of nonzero PHI's.
  191. *> \endverbatim
  192. *>
  193. *> \param[in] LWORK
  194. *> \verbatim
  195. *> LWORK is INTEGER
  196. *> The dimension of the array WORK.
  197. *> \endverbatim
  198. *> \verbatim
  199. *> If LWORK = -1, then a workspace query is assumed; the routine
  200. *> only calculates the optimal size of the WORK array, returns
  201. *> this value as the first entry of the work array, and no error
  202. *> message related to LWORK is issued by XERBLA.
  203. *> \endverbatim
  204. *>
  205. *> \param[out] RWORK
  206. *> \verbatim
  207. *> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
  208. *> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
  209. *> If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1),
  210. *> ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
  211. *> define the matrix in intermediate bidiagonal-block form
  212. *> remaining after nonconvergence. INFO specifies the number
  213. *> of nonzero PHI's.
  214. *> \endverbatim
  215. *>
  216. *> \param[in] LRWORK
  217. *> \verbatim
  218. *> LRWORK is INTEGER
  219. *> The dimension of the array RWORK.
  220. *>
  221. *> If LRWORK = -1, then a workspace query is assumed; the routine
  222. *> only calculates the optimal size of the RWORK array, returns
  223. *> this value as the first entry of the work array, and no error
  224. *> message related to LRWORK is issued by XERBLA.
  225. *> \param[out] IWORK
  226. *> \verbatim
  227. *> IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
  228. *> \endverbatim
  229. *> \endverbatim
  230. *>
  231. *> \param[out] INFO
  232. *> \verbatim
  233. *> INFO is INTEGER
  234. *> = 0: successful exit.
  235. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  236. *> > 0: ZBBCSD did not converge. See the description of WORK
  237. *> above for details.
  238. *> \endverbatim
  239. *
  240. *> \par References:
  241. * ================
  242. *>
  243. *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  244. *> Algorithms, 50(1):33-65, 2009.
  245. *
  246. * Authors:
  247. * ========
  248. *
  249. *> \author Univ. of Tennessee
  250. *> \author Univ. of California Berkeley
  251. *> \author Univ. of Colorado Denver
  252. *> \author NAG Ltd.
  253. *
  254. *> \date July 2012
  255. *
  256. *> \ingroup complex16OTHERcomputational
  257. *
  258. * =====================================================================
  259. SUBROUTINE ZUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11,
  260. $ X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T,
  261. $ LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK,
  262. $ INFO )
  263. *
  264. * -- LAPACK computational routine (version 3.5.0) --
  265. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  266. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  267. * July 2012
  268. *
  269. * .. Scalar Arguments ..
  270. CHARACTER JOBU1, JOBU2, JOBV1T
  271. INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21,
  272. $ M, P, Q
  273. INTEGER LRWORK, LRWORKMIN, LRWORKOPT
  274. * ..
  275. * .. Array Arguments ..
  276. DOUBLE PRECISION RWORK(*)
  277. DOUBLE PRECISION THETA(*)
  278. COMPLEX*16 U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*),
  279. $ X11(LDX11,*), X21(LDX21,*)
  280. INTEGER IWORK(*)
  281. * ..
  282. *
  283. * =====================================================================
  284. *
  285. * .. Parameters ..
  286. COMPLEX*16 ONE, ZERO
  287. PARAMETER ( ONE = (1.0D0,0.0D0), ZERO = (0.0D0,0.0D0) )
  288. * ..
  289. * .. Local Scalars ..
  290. INTEGER CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
  291. $ IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
  292. $ IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
  293. $ J, LBBCSD, LORBDB, LORGLQ, LORGLQMIN,
  294. $ LORGLQOPT, LORGQR, LORGQRMIN, LORGQROPT,
  295. $ LWORKMIN, LWORKOPT, R
  296. LOGICAL LQUERY, WANTU1, WANTU2, WANTV1T
  297. * ..
  298. * .. External Subroutines ..
  299. EXTERNAL ZBBCSD, ZCOPY, ZLACPY, ZLAPMR, ZLAPMT, ZUNBDB1,
  300. $ ZUNBDB2, ZUNBDB3, ZUNBDB4, ZUNGLQ, ZUNGQR,
  301. $ XERBLA
  302. * ..
  303. * .. External Functions ..
  304. LOGICAL LSAME
  305. EXTERNAL LSAME
  306. * ..
  307. * .. Intrinsic Function ..
  308. INTRINSIC INT, MAX, MIN
  309. * ..
  310. * .. Executable Statements ..
  311. *
  312. * Test input arguments
  313. *
  314. INFO = 0
  315. WANTU1 = LSAME( JOBU1, 'Y' )
  316. WANTU2 = LSAME( JOBU2, 'Y' )
  317. WANTV1T = LSAME( JOBV1T, 'Y' )
  318. LQUERY = LWORK .EQ. -1
  319. *
  320. IF( M .LT. 0 ) THEN
  321. INFO = -4
  322. ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  323. INFO = -5
  324. ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  325. INFO = -6
  326. ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
  327. INFO = -8
  328. ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
  329. INFO = -10
  330. ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
  331. INFO = -13
  332. ELSE IF( WANTU2 .AND. LDU2 .LT. M - P ) THEN
  333. INFO = -15
  334. ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
  335. INFO = -17
  336. END IF
  337. *
  338. R = MIN( P, M-P, Q, M-Q )
  339. *
  340. * Compute workspace
  341. *
  342. * WORK layout:
  343. * |-----------------------------------------|
  344. * | LWORKOPT (1) |
  345. * |-----------------------------------------|
  346. * | TAUP1 (MAX(1,P)) |
  347. * | TAUP2 (MAX(1,M-P)) |
  348. * | TAUQ1 (MAX(1,Q)) |
  349. * |-----------------------------------------|
  350. * | ZUNBDB WORK | ZUNGQR WORK | ZUNGLQ WORK |
  351. * | | | |
  352. * | | | |
  353. * | | | |
  354. * | | | |
  355. * |-----------------------------------------|
  356. * RWORK layout:
  357. * |------------------|
  358. * | LRWORKOPT (1) |
  359. * |------------------|
  360. * | PHI (MAX(1,R-1)) |
  361. * |------------------|
  362. * | B11D (R) |
  363. * | B11E (R-1) |
  364. * | B12D (R) |
  365. * | B12E (R-1) |
  366. * | B21D (R) |
  367. * | B21E (R-1) |
  368. * | B22D (R) |
  369. * | B22E (R-1) |
  370. * | ZBBCSD RWORK |
  371. * |------------------|
  372. *
  373. IF( INFO .EQ. 0 ) THEN
  374. IPHI = 2
  375. IB11D = IPHI + MAX( 1, R-1 )
  376. IB11E = IB11D + MAX( 1, R )
  377. IB12D = IB11E + MAX( 1, R - 1 )
  378. IB12E = IB12D + MAX( 1, R )
  379. IB21D = IB12E + MAX( 1, R - 1 )
  380. IB21E = IB21D + MAX( 1, R )
  381. IB22D = IB21E + MAX( 1, R - 1 )
  382. IB22E = IB22D + MAX( 1, R )
  383. IBBCSD = IB22E + MAX( 1, R - 1 )
  384. ITAUP1 = 2
  385. ITAUP2 = ITAUP1 + MAX( 1, P )
  386. ITAUQ1 = ITAUP2 + MAX( 1, M-P )
  387. IORBDB = ITAUQ1 + MAX( 1, Q )
  388. IORGQR = ITAUQ1 + MAX( 1, Q )
  389. IORGLQ = ITAUQ1 + MAX( 1, Q )
  390. IF( R .EQ. Q ) THEN
  391. CALL ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  392. $ 0, 0, WORK, -1, CHILDINFO )
  393. LORBDB = INT( WORK(1) )
  394. IF( P .GE. M-P ) THEN
  395. CALL ZUNGQR( P, P, Q, U1, LDU1, 0, WORK(1), -1,
  396. $ CHILDINFO )
  397. LORGQRMIN = MAX( 1, P )
  398. LORGQROPT = INT( WORK(1) )
  399. ELSE
  400. CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, 0, WORK(1), -1,
  401. $ CHILDINFO )
  402. LORGQRMIN = MAX( 1, M-P )
  403. LORGQROPT = INT( WORK(1) )
  404. END IF
  405. CALL ZUNGLQ( MAX(0,Q-1), MAX(0,Q-1), MAX(0,Q-1), V1T, LDV1T,
  406. $ 0, WORK(1), -1, CHILDINFO )
  407. LORGLQMIN = MAX( 1, Q-1 )
  408. LORGLQOPT = INT( WORK(1) )
  409. CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  410. $ 0, U1, LDU1, U2, LDU2, V1T, LDV1T, 0, 1, 0, 0,
  411. $ 0, 0, 0, 0, 0, 0, RWORK(1), -1, CHILDINFO )
  412. LBBCSD = INT( RWORK(1) )
  413. ELSE IF( R .EQ. P ) THEN
  414. CALL ZUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  415. $ 0, 0, WORK(1), -1, CHILDINFO )
  416. LORBDB = INT( WORK(1) )
  417. IF( P-1 .GE. M-P ) THEN
  418. CALL ZUNGQR( P-1, P-1, P-1, U1(2,2), LDU1, 0, WORK(1),
  419. $ -1, CHILDINFO )
  420. LORGQRMIN = MAX( 1, P-1 )
  421. LORGQROPT = INT( WORK(1) )
  422. ELSE
  423. CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, 0, WORK(1), -1,
  424. $ CHILDINFO )
  425. LORGQRMIN = MAX( 1, M-P )
  426. LORGQROPT = INT( WORK(1) )
  427. END IF
  428. CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, 0, WORK(1), -1,
  429. $ CHILDINFO )
  430. LORGLQMIN = MAX( 1, Q )
  431. LORGLQOPT = INT( WORK(1) )
  432. CALL ZBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  433. $ 0, V1T, LDV1T, 0, 1, U1, LDU1, U2, LDU2, 0, 0,
  434. $ 0, 0, 0, 0, 0, 0, RWORK(1), -1, CHILDINFO )
  435. LBBCSD = INT( RWORK(1) )
  436. ELSE IF( R .EQ. M-P ) THEN
  437. CALL ZUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  438. $ 0, 0, WORK(1), -1, CHILDINFO )
  439. LORBDB = INT( WORK(1) )
  440. IF( P .GE. M-P-1 ) THEN
  441. CALL ZUNGQR( P, P, Q, U1, LDU1, 0, WORK(1), -1,
  442. $ CHILDINFO )
  443. LORGQRMIN = MAX( 1, P )
  444. LORGQROPT = INT( WORK(1) )
  445. ELSE
  446. CALL ZUNGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2, 0,
  447. $ WORK(1), -1, CHILDINFO )
  448. LORGQRMIN = MAX( 1, M-P-1 )
  449. LORGQROPT = INT( WORK(1) )
  450. END IF
  451. CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, 0, WORK(1), -1,
  452. $ CHILDINFO )
  453. LORGLQMIN = MAX( 1, Q )
  454. LORGLQOPT = INT( WORK(1) )
  455. CALL ZBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  456. $ THETA, 0, 0, 1, V1T, LDV1T, U2, LDU2, U1, LDU1,
  457. $ 0, 0, 0, 0, 0, 0, 0, 0, RWORK(1), -1,
  458. $ CHILDINFO )
  459. LBBCSD = INT( RWORK(1) )
  460. ELSE
  461. CALL ZUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, 0, 0,
  462. $ 0, 0, 0, WORK(1), -1, CHILDINFO )
  463. LORBDB = M + INT( WORK(1) )
  464. IF( P .GE. M-P ) THEN
  465. CALL ZUNGQR( P, P, M-Q, U1, LDU1, 0, WORK(1), -1,
  466. $ CHILDINFO )
  467. LORGQRMIN = MAX( 1, P )
  468. LORGQROPT = INT( WORK(1) )
  469. ELSE
  470. CALL ZUNGQR( M-P, M-P, M-Q, U2, LDU2, 0, WORK(1), -1,
  471. $ CHILDINFO )
  472. LORGQRMIN = MAX( 1, M-P )
  473. LORGQROPT = INT( WORK(1) )
  474. END IF
  475. CALL ZUNGLQ( Q, Q, Q, V1T, LDV1T, 0, WORK(1), -1,
  476. $ CHILDINFO )
  477. LORGLQMIN = MAX( 1, Q )
  478. LORGLQOPT = INT( WORK(1) )
  479. CALL ZBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  480. $ THETA, 0, U2, LDU2, U1, LDU1, 0, 1, V1T, LDV1T,
  481. $ 0, 0, 0, 0, 0, 0, 0, 0, RWORK(1), -1,
  482. $ CHILDINFO )
  483. LBBCSD = INT( RWORK(1) )
  484. END IF
  485. LRWORKMIN = IBBCSD+LBBCSD-1
  486. LRWORKOPT = LRWORKMIN
  487. RWORK(1) = LRWORKOPT
  488. LWORKMIN = MAX( IORBDB+LORBDB-1,
  489. $ IORGQR+LORGQRMIN-1,
  490. $ IORGLQ+LORGLQMIN-1 )
  491. LWORKOPT = MAX( IORBDB+LORBDB-1,
  492. $ IORGQR+LORGQROPT-1,
  493. $ IORGLQ+LORGLQOPT-1 )
  494. WORK(1) = LWORKOPT
  495. IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
  496. INFO = -19
  497. END IF
  498. END IF
  499. IF( INFO .NE. 0 ) THEN
  500. CALL XERBLA( 'ZUNCSD2BY1', -INFO )
  501. RETURN
  502. ELSE IF( LQUERY ) THEN
  503. RETURN
  504. END IF
  505. LORGQR = LWORK-IORGQR+1
  506. LORGLQ = LWORK-IORGLQ+1
  507. *
  508. * Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q,
  509. * in which R = MIN(P,M-P,Q,M-Q)
  510. *
  511. IF( R .EQ. Q ) THEN
  512. *
  513. * Case 1: R = Q
  514. *
  515. * Simultaneously bidiagonalize X11 and X21
  516. *
  517. CALL ZUNBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  518. $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  519. $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  520. *
  521. * Accumulate Householder reflectors
  522. *
  523. IF( WANTU1 .AND. P .GT. 0 ) THEN
  524. CALL ZLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  525. CALL ZUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  526. $ LORGQR, CHILDINFO )
  527. END IF
  528. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  529. CALL ZLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  530. CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  531. $ WORK(IORGQR), LORGQR, CHILDINFO )
  532. END IF
  533. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  534. V1T(1,1) = ONE
  535. DO J = 2, Q
  536. V1T(1,J) = ZERO
  537. V1T(J,1) = ZERO
  538. END DO
  539. CALL ZLACPY( 'U', Q-1, Q-1, X21(1,2), LDX21, V1T(2,2),
  540. $ LDV1T )
  541. CALL ZUNGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
  542. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  543. END IF
  544. *
  545. * Simultaneously diagonalize X11 and X21.
  546. *
  547. CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, 'N', 'N', M, P, Q, THETA,
  548. $ RWORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, 0, 1,
  549. $ RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  550. $ RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  551. $ RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
  552. $ CHILDINFO )
  553. *
  554. * Permute rows and columns to place zero submatrices in
  555. * preferred positions
  556. *
  557. IF( Q .GT. 0 .AND. WANTU2 ) THEN
  558. DO I = 1, Q
  559. IWORK(I) = M - P - Q + I
  560. END DO
  561. DO I = Q + 1, M - P
  562. IWORK(I) = I - Q
  563. END DO
  564. CALL ZLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  565. END IF
  566. ELSE IF( R .EQ. P ) THEN
  567. *
  568. * Case 2: R = P
  569. *
  570. * Simultaneously bidiagonalize X11 and X21
  571. *
  572. CALL ZUNBDB2( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  573. $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  574. $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  575. *
  576. * Accumulate Householder reflectors
  577. *
  578. IF( WANTU1 .AND. P .GT. 0 ) THEN
  579. U1(1,1) = ONE
  580. DO J = 2, P
  581. U1(1,J) = ZERO
  582. U1(J,1) = ZERO
  583. END DO
  584. CALL ZLACPY( 'L', P-1, P-1, X11(2,1), LDX11, U1(2,2), LDU1 )
  585. CALL ZUNGQR( P-1, P-1, P-1, U1(2,2), LDU1, WORK(ITAUP1),
  586. $ WORK(IORGQR), LORGQR, CHILDINFO )
  587. END IF
  588. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  589. CALL ZLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
  590. CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
  591. $ WORK(IORGQR), LORGQR, CHILDINFO )
  592. END IF
  593. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  594. CALL ZLACPY( 'U', P, Q, X11, LDX11, V1T, LDV1T )
  595. CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  596. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  597. END IF
  598. *
  599. * Simultaneously diagonalize X11 and X21.
  600. *
  601. CALL ZBBCSD( JOBV1T, 'N', JOBU1, JOBU2, 'T', M, Q, P, THETA,
  602. $ RWORK(IPHI), V1T, LDV1T, 0, 1, U1, LDU1, U2, LDU2,
  603. $ RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  604. $ RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  605. $ RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
  606. $ CHILDINFO )
  607. *
  608. * Permute rows and columns to place identity submatrices in
  609. * preferred positions
  610. *
  611. IF( Q .GT. 0 .AND. WANTU2 ) THEN
  612. DO I = 1, Q
  613. IWORK(I) = M - P - Q + I
  614. END DO
  615. DO I = Q + 1, M - P
  616. IWORK(I) = I - Q
  617. END DO
  618. CALL ZLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
  619. END IF
  620. ELSE IF( R .EQ. M-P ) THEN
  621. *
  622. * Case 3: R = M-P
  623. *
  624. * Simultaneously bidiagonalize X11 and X21
  625. *
  626. CALL ZUNBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  627. $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  628. $ WORK(ITAUQ1), WORK(IORBDB), LORBDB, CHILDINFO )
  629. *
  630. * Accumulate Householder reflectors
  631. *
  632. IF( WANTU1 .AND. P .GT. 0 ) THEN
  633. CALL ZLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
  634. CALL ZUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
  635. $ LORGQR, CHILDINFO )
  636. END IF
  637. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  638. U2(1,1) = ONE
  639. DO J = 2, M-P
  640. U2(1,J) = ZERO
  641. U2(J,1) = ZERO
  642. END DO
  643. CALL ZLACPY( 'L', M-P-1, M-P-1, X21(2,1), LDX21, U2(2,2),
  644. $ LDU2 )
  645. CALL ZUNGQR( M-P-1, M-P-1, M-P-1, U2(2,2), LDU2,
  646. $ WORK(ITAUP2), WORK(IORGQR), LORGQR, CHILDINFO )
  647. END IF
  648. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  649. CALL ZLACPY( 'U', M-P, Q, X21, LDX21, V1T, LDV1T )
  650. CALL ZUNGLQ( Q, Q, R, V1T, LDV1T, WORK(ITAUQ1),
  651. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  652. END IF
  653. *
  654. * Simultaneously diagonalize X11 and X21.
  655. *
  656. CALL ZBBCSD( 'N', JOBV1T, JOBU2, JOBU1, 'T', M, M-Q, M-P,
  657. $ THETA, RWORK(IPHI), 0, 1, V1T, LDV1T, U2, LDU2,
  658. $ U1, LDU1, RWORK(IB11D), RWORK(IB11E),
  659. $ RWORK(IB12D), RWORK(IB12E), RWORK(IB21D),
  660. $ RWORK(IB21E), RWORK(IB22D), RWORK(IB22E),
  661. $ RWORK(IBBCSD), LBBCSD, CHILDINFO )
  662. *
  663. * Permute rows and columns to place identity submatrices in
  664. * preferred positions
  665. *
  666. IF( Q .GT. R ) THEN
  667. DO I = 1, R
  668. IWORK(I) = Q - R + I
  669. END DO
  670. DO I = R + 1, Q
  671. IWORK(I) = I - R
  672. END DO
  673. IF( WANTU1 ) THEN
  674. CALL ZLAPMT( .FALSE., P, Q, U1, LDU1, IWORK )
  675. END IF
  676. IF( WANTV1T ) THEN
  677. CALL ZLAPMR( .FALSE., Q, Q, V1T, LDV1T, IWORK )
  678. END IF
  679. END IF
  680. ELSE
  681. *
  682. * Case 4: R = M-Q
  683. *
  684. * Simultaneously bidiagonalize X11 and X21
  685. *
  686. CALL ZUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA,
  687. $ RWORK(IPHI), WORK(ITAUP1), WORK(ITAUP2),
  688. $ WORK(ITAUQ1), WORK(IORBDB), WORK(IORBDB+M),
  689. $ LORBDB-M, CHILDINFO )
  690. *
  691. * Accumulate Householder reflectors
  692. *
  693. IF( WANTU1 .AND. P .GT. 0 ) THEN
  694. CALL ZCOPY( P, WORK(IORBDB), 1, U1, 1 )
  695. DO J = 2, P
  696. U1(1,J) = ZERO
  697. END DO
  698. CALL ZLACPY( 'L', P-1, M-Q-1, X11(2,1), LDX11, U1(2,2),
  699. $ LDU1 )
  700. CALL ZUNGQR( P, P, M-Q, U1, LDU1, WORK(ITAUP1),
  701. $ WORK(IORGQR), LORGQR, CHILDINFO )
  702. END IF
  703. IF( WANTU2 .AND. M-P .GT. 0 ) THEN
  704. CALL ZCOPY( M-P, WORK(IORBDB+P), 1, U2, 1 )
  705. DO J = 2, M-P
  706. U2(1,J) = ZERO
  707. END DO
  708. CALL ZLACPY( 'L', M-P-1, M-Q-1, X21(2,1), LDX21, U2(2,2),
  709. $ LDU2 )
  710. CALL ZUNGQR( M-P, M-P, M-Q, U2, LDU2, WORK(ITAUP2),
  711. $ WORK(IORGQR), LORGQR, CHILDINFO )
  712. END IF
  713. IF( WANTV1T .AND. Q .GT. 0 ) THEN
  714. CALL ZLACPY( 'U', M-Q, Q, X21, LDX21, V1T, LDV1T )
  715. CALL ZLACPY( 'U', P-(M-Q), Q-(M-Q), X11(M-Q+1,M-Q+1), LDX11,
  716. $ V1T(M-Q+1,M-Q+1), LDV1T )
  717. CALL ZLACPY( 'U', -P+Q, Q-P, X21(M-Q+1,P+1), LDX21,
  718. $ V1T(P+1,P+1), LDV1T )
  719. CALL ZUNGLQ( Q, Q, Q, V1T, LDV1T, WORK(ITAUQ1),
  720. $ WORK(IORGLQ), LORGLQ, CHILDINFO )
  721. END IF
  722. *
  723. * Simultaneously diagonalize X11 and X21.
  724. *
  725. CALL ZBBCSD( JOBU2, JOBU1, 'N', JOBV1T, 'N', M, M-P, M-Q,
  726. $ THETA, RWORK(IPHI), U2, LDU2, U1, LDU1, 0, 1, V1T,
  727. $ LDV1T, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
  728. $ RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
  729. $ RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD), LBBCSD,
  730. $ CHILDINFO )
  731. *
  732. * Permute rows and columns to place identity submatrices in
  733. * preferred positions
  734. *
  735. IF( P .GT. R ) THEN
  736. DO I = 1, R
  737. IWORK(I) = P - R + I
  738. END DO
  739. DO I = R + 1, P
  740. IWORK(I) = I - R
  741. END DO
  742. IF( WANTU1 ) THEN
  743. CALL ZLAPMT( .FALSE., P, P, U1, LDU1, IWORK )
  744. END IF
  745. IF( WANTV1T ) THEN
  746. CALL ZLAPMR( .FALSE., P, Q, V1T, LDV1T, IWORK )
  747. END IF
  748. END IF
  749. END IF
  750. *
  751. RETURN
  752. *
  753. * End of ZUNCSD2BY1
  754. *
  755. END