You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dchkst.f 68 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976
  1. *> \brief \b DCHKST
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DCHKST( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  12. * NOUNIT, A, LDA, AP, SD, SE, D1, D2, D3, D4, D5,
  13. * WA1, WA2, WA3, WR, U, LDU, V, VP, TAU, Z, WORK,
  14. * LWORK, IWORK, LIWORK, RESULT, INFO )
  15. *
  16. * .. Scalar Arguments ..
  17. * INTEGER INFO, LDA, LDU, LIWORK, LWORK, NOUNIT, NSIZES,
  18. * $ NTYPES
  19. * DOUBLE PRECISION THRESH
  20. * ..
  21. * .. Array Arguments ..
  22. * LOGICAL DOTYPE( * )
  23. * INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  24. * DOUBLE PRECISION A( LDA, * ), AP( * ), D1( * ), D2( * ),
  25. * $ D3( * ), D4( * ), D5( * ), RESULT( * ),
  26. * $ SD( * ), SE( * ), TAU( * ), U( LDU, * ),
  27. * $ V( LDU, * ), VP( * ), WA1( * ), WA2( * ),
  28. * $ WA3( * ), WORK( * ), WR( * ), Z( LDU, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DCHKST checks the symmetric eigenvalue problem routines.
  38. *>
  39. *> DSYTRD factors A as U S U' , where ' means transpose,
  40. *> S is symmetric tridiagonal, and U is orthogonal.
  41. *> DSYTRD can use either just the lower or just the upper triangle
  42. *> of A; DCHKST checks both cases.
  43. *> U is represented as a product of Householder
  44. *> transformations, whose vectors are stored in the first
  45. *> n-1 columns of V, and whose scale factors are in TAU.
  46. *>
  47. *> DSPTRD does the same as DSYTRD, except that A and V are stored
  48. *> in "packed" format.
  49. *>
  50. *> DORGTR constructs the matrix U from the contents of V and TAU.
  51. *>
  52. *> DOPGTR constructs the matrix U from the contents of VP and TAU.
  53. *>
  54. *> DSTEQR factors S as Z D1 Z' , where Z is the orthogonal
  55. *> matrix of eigenvectors and D1 is a diagonal matrix with
  56. *> the eigenvalues on the diagonal. D2 is the matrix of
  57. *> eigenvalues computed when Z is not computed.
  58. *>
  59. *> DSTERF computes D3, the matrix of eigenvalues, by the
  60. *> PWK method, which does not yield eigenvectors.
  61. *>
  62. *> DPTEQR factors S as Z4 D4 Z4' , for a
  63. *> symmetric positive definite tridiagonal matrix.
  64. *> D5 is the matrix of eigenvalues computed when Z is not
  65. *> computed.
  66. *>
  67. *> DSTEBZ computes selected eigenvalues. WA1, WA2, and
  68. *> WA3 will denote eigenvalues computed to high
  69. *> absolute accuracy, with different range options.
  70. *> WR will denote eigenvalues computed to high relative
  71. *> accuracy.
  72. *>
  73. *> DSTEIN computes Y, the eigenvectors of S, given the
  74. *> eigenvalues.
  75. *>
  76. *> DSTEDC factors S as Z D1 Z' , where Z is the orthogonal
  77. *> matrix of eigenvectors and D1 is a diagonal matrix with
  78. *> the eigenvalues on the diagonal ('I' option). It may also
  79. *> update an input orthogonal matrix, usually the output
  80. *> from DSYTRD/DORGTR or DSPTRD/DOPGTR ('V' option). It may
  81. *> also just compute eigenvalues ('N' option).
  82. *>
  83. *> DSTEMR factors S as Z D1 Z' , where Z is the orthogonal
  84. *> matrix of eigenvectors and D1 is a diagonal matrix with
  85. *> the eigenvalues on the diagonal ('I' option). DSTEMR
  86. *> uses the Relatively Robust Representation whenever possible.
  87. *>
  88. *> When DCHKST is called, a number of matrix "sizes" ("n's") and a
  89. *> number of matrix "types" are specified. For each size ("n")
  90. *> and each type of matrix, one matrix will be generated and used
  91. *> to test the symmetric eigenroutines. For each matrix, a number
  92. *> of tests will be performed:
  93. *>
  94. *> (1) | A - V S V' | / ( |A| n ulp ) DSYTRD( UPLO='U', ... )
  95. *>
  96. *> (2) | I - UV' | / ( n ulp ) DORGTR( UPLO='U', ... )
  97. *>
  98. *> (3) | A - V S V' | / ( |A| n ulp ) DSYTRD( UPLO='L', ... )
  99. *>
  100. *> (4) | I - UV' | / ( n ulp ) DORGTR( UPLO='L', ... )
  101. *>
  102. *> (5-8) Same as 1-4, but for DSPTRD and DOPGTR.
  103. *>
  104. *> (9) | S - Z D Z' | / ( |S| n ulp ) DSTEQR('V',...)
  105. *>
  106. *> (10) | I - ZZ' | / ( n ulp ) DSTEQR('V',...)
  107. *>
  108. *> (11) | D1 - D2 | / ( |D1| ulp ) DSTEQR('N',...)
  109. *>
  110. *> (12) | D1 - D3 | / ( |D1| ulp ) DSTERF
  111. *>
  112. *> (13) 0 if the true eigenvalues (computed by sturm count)
  113. *> of S are within THRESH of
  114. *> those in D1. 2*THRESH if they are not. (Tested using
  115. *> DSTECH)
  116. *>
  117. *> For S positive definite,
  118. *>
  119. *> (14) | S - Z4 D4 Z4' | / ( |S| n ulp ) DPTEQR('V',...)
  120. *>
  121. *> (15) | I - Z4 Z4' | / ( n ulp ) DPTEQR('V',...)
  122. *>
  123. *> (16) | D4 - D5 | / ( 100 |D4| ulp ) DPTEQR('N',...)
  124. *>
  125. *> When S is also diagonally dominant by the factor gamma < 1,
  126. *>
  127. *> (17) max | D4(i) - WR(i) | / ( |D4(i)| omega ) ,
  128. *> i
  129. *> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
  130. *> DSTEBZ( 'A', 'E', ...)
  131. *>
  132. *> (18) | WA1 - D3 | / ( |D3| ulp ) DSTEBZ( 'A', 'E', ...)
  133. *>
  134. *> (19) ( max { min | WA2(i)-WA3(j) | } +
  135. *> i j
  136. *> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
  137. *> i j
  138. *> DSTEBZ( 'I', 'E', ...)
  139. *>
  140. *> (20) | S - Y WA1 Y' | / ( |S| n ulp ) DSTEBZ, SSTEIN
  141. *>
  142. *> (21) | I - Y Y' | / ( n ulp ) DSTEBZ, SSTEIN
  143. *>
  144. *> (22) | S - Z D Z' | / ( |S| n ulp ) DSTEDC('I')
  145. *>
  146. *> (23) | I - ZZ' | / ( n ulp ) DSTEDC('I')
  147. *>
  148. *> (24) | S - Z D Z' | / ( |S| n ulp ) DSTEDC('V')
  149. *>
  150. *> (25) | I - ZZ' | / ( n ulp ) DSTEDC('V')
  151. *>
  152. *> (26) | D1 - D2 | / ( |D1| ulp ) DSTEDC('V') and
  153. *> DSTEDC('N')
  154. *>
  155. *> Test 27 is disabled at the moment because DSTEMR does not
  156. *> guarantee high relatvie accuracy.
  157. *>
  158. *> (27) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
  159. *> i
  160. *> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
  161. *> DSTEMR('V', 'A')
  162. *>
  163. *> (28) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
  164. *> i
  165. *> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
  166. *> DSTEMR('V', 'I')
  167. *>
  168. *> Tests 29 through 34 are disable at present because DSTEMR
  169. *> does not handle partial spectrum requests.
  170. *>
  171. *> (29) | S - Z D Z' | / ( |S| n ulp ) DSTEMR('V', 'I')
  172. *>
  173. *> (30) | I - ZZ' | / ( n ulp ) DSTEMR('V', 'I')
  174. *>
  175. *> (31) ( max { min | WA2(i)-WA3(j) | } +
  176. *> i j
  177. *> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
  178. *> i j
  179. *> DSTEMR('N', 'I') vs. SSTEMR('V', 'I')
  180. *>
  181. *> (32) | S - Z D Z' | / ( |S| n ulp ) DSTEMR('V', 'V')
  182. *>
  183. *> (33) | I - ZZ' | / ( n ulp ) DSTEMR('V', 'V')
  184. *>
  185. *> (34) ( max { min | WA2(i)-WA3(j) | } +
  186. *> i j
  187. *> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
  188. *> i j
  189. *> DSTEMR('N', 'V') vs. SSTEMR('V', 'V')
  190. *>
  191. *> (35) | S - Z D Z' | / ( |S| n ulp ) DSTEMR('V', 'A')
  192. *>
  193. *> (36) | I - ZZ' | / ( n ulp ) DSTEMR('V', 'A')
  194. *>
  195. *> (37) ( max { min | WA2(i)-WA3(j) | } +
  196. *> i j
  197. *> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
  198. *> i j
  199. *> DSTEMR('N', 'A') vs. SSTEMR('V', 'A')
  200. *>
  201. *> The "sizes" are specified by an array NN(1:NSIZES); the value of
  202. *> each element NN(j) specifies one size.
  203. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
  204. *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
  205. *> Currently, the list of possible types is:
  206. *>
  207. *> (1) The zero matrix.
  208. *> (2) The identity matrix.
  209. *>
  210. *> (3) A diagonal matrix with evenly spaced entries
  211. *> 1, ..., ULP and random signs.
  212. *> (ULP = (first number larger than 1) - 1 )
  213. *> (4) A diagonal matrix with geometrically spaced entries
  214. *> 1, ..., ULP and random signs.
  215. *> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
  216. *> and random signs.
  217. *>
  218. *> (6) Same as (4), but multiplied by SQRT( overflow threshold )
  219. *> (7) Same as (4), but multiplied by SQRT( underflow threshold )
  220. *>
  221. *> (8) A matrix of the form U' D U, where U is orthogonal and
  222. *> D has evenly spaced entries 1, ..., ULP with random signs
  223. *> on the diagonal.
  224. *>
  225. *> (9) A matrix of the form U' D U, where U is orthogonal and
  226. *> D has geometrically spaced entries 1, ..., ULP with random
  227. *> signs on the diagonal.
  228. *>
  229. *> (10) A matrix of the form U' D U, where U is orthogonal and
  230. *> D has "clustered" entries 1, ULP,..., ULP with random
  231. *> signs on the diagonal.
  232. *>
  233. *> (11) Same as (8), but multiplied by SQRT( overflow threshold )
  234. *> (12) Same as (8), but multiplied by SQRT( underflow threshold )
  235. *>
  236. *> (13) Symmetric matrix with random entries chosen from (-1,1).
  237. *> (14) Same as (13), but multiplied by SQRT( overflow threshold )
  238. *> (15) Same as (13), but multiplied by SQRT( underflow threshold )
  239. *> (16) Same as (8), but diagonal elements are all positive.
  240. *> (17) Same as (9), but diagonal elements are all positive.
  241. *> (18) Same as (10), but diagonal elements are all positive.
  242. *> (19) Same as (16), but multiplied by SQRT( overflow threshold )
  243. *> (20) Same as (16), but multiplied by SQRT( underflow threshold )
  244. *> (21) A diagonally dominant tridiagonal matrix with geometrically
  245. *> spaced diagonal entries 1, ..., ULP.
  246. *> \endverbatim
  247. *
  248. * Arguments:
  249. * ==========
  250. *
  251. *> \param[in] NSIZES
  252. *> \verbatim
  253. *> NSIZES is INTEGER
  254. *> The number of sizes of matrices to use. If it is zero,
  255. *> DCHKST does nothing. It must be at least zero.
  256. *> \endverbatim
  257. *>
  258. *> \param[in] NN
  259. *> \verbatim
  260. *> NN is INTEGER array, dimension (NSIZES)
  261. *> An array containing the sizes to be used for the matrices.
  262. *> Zero values will be skipped. The values must be at least
  263. *> zero.
  264. *> \endverbatim
  265. *>
  266. *> \param[in] NTYPES
  267. *> \verbatim
  268. *> NTYPES is INTEGER
  269. *> The number of elements in DOTYPE. If it is zero, DCHKST
  270. *> does nothing. It must be at least zero. If it is MAXTYP+1
  271. *> and NSIZES is 1, then an additional type, MAXTYP+1 is
  272. *> defined, which is to use whatever matrix is in A. This
  273. *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
  274. *> DOTYPE(MAXTYP+1) is .TRUE. .
  275. *> \endverbatim
  276. *>
  277. *> \param[in] DOTYPE
  278. *> \verbatim
  279. *> DOTYPE is LOGICAL array, dimension (NTYPES)
  280. *> If DOTYPE(j) is .TRUE., then for each size in NN a
  281. *> matrix of that size and of type j will be generated.
  282. *> If NTYPES is smaller than the maximum number of types
  283. *> defined (PARAMETER MAXTYP), then types NTYPES+1 through
  284. *> MAXTYP will not be generated. If NTYPES is larger
  285. *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
  286. *> will be ignored.
  287. *> \endverbatim
  288. *>
  289. *> \param[in,out] ISEED
  290. *> \verbatim
  291. *> ISEED is INTEGER array, dimension (4)
  292. *> On entry ISEED specifies the seed of the random number
  293. *> generator. The array elements should be between 0 and 4095;
  294. *> if not they will be reduced mod 4096. Also, ISEED(4) must
  295. *> be odd. The random number generator uses a linear
  296. *> congruential sequence limited to small integers, and so
  297. *> should produce machine independent random numbers. The
  298. *> values of ISEED are changed on exit, and can be used in the
  299. *> next call to DCHKST to continue the same random number
  300. *> sequence.
  301. *> \endverbatim
  302. *>
  303. *> \param[in] THRESH
  304. *> \verbatim
  305. *> THRESH is DOUBLE PRECISION
  306. *> A test will count as "failed" if the "error", computed as
  307. *> described above, exceeds THRESH. Note that the error
  308. *> is scaled to be O(1), so THRESH should be a reasonably
  309. *> small multiple of 1, e.g., 10 or 100. In particular,
  310. *> it should not depend on the precision (single vs. double)
  311. *> or the size of the matrix. It must be at least zero.
  312. *> \endverbatim
  313. *>
  314. *> \param[in] NOUNIT
  315. *> \verbatim
  316. *> NOUNIT is INTEGER
  317. *> The FORTRAN unit number for printing out error messages
  318. *> (e.g., if a routine returns IINFO not equal to 0.)
  319. *> \endverbatim
  320. *>
  321. *> \param[in,out] A
  322. *> \verbatim
  323. *> A is DOUBLE PRECISION array of
  324. *> dimension ( LDA , max(NN) )
  325. *> Used to hold the matrix whose eigenvalues are to be
  326. *> computed. On exit, A contains the last matrix actually
  327. *> used.
  328. *> \endverbatim
  329. *>
  330. *> \param[in] LDA
  331. *> \verbatim
  332. *> LDA is INTEGER
  333. *> The leading dimension of A. It must be at
  334. *> least 1 and at least max( NN ).
  335. *> \endverbatim
  336. *>
  337. *> \param[out] AP
  338. *> \verbatim
  339. *> AP is DOUBLE PRECISION array of
  340. *> dimension( max(NN)*max(NN+1)/2 )
  341. *> The matrix A stored in packed format.
  342. *> \endverbatim
  343. *>
  344. *> \param[out] SD
  345. *> \verbatim
  346. *> SD is DOUBLE PRECISION array of
  347. *> dimension( max(NN) )
  348. *> The diagonal of the tridiagonal matrix computed by DSYTRD.
  349. *> On exit, SD and SE contain the tridiagonal form of the
  350. *> matrix in A.
  351. *> \endverbatim
  352. *>
  353. *> \param[out] SE
  354. *> \verbatim
  355. *> SE is DOUBLE PRECISION array of
  356. *> dimension( max(NN) )
  357. *> The off-diagonal of the tridiagonal matrix computed by
  358. *> DSYTRD. On exit, SD and SE contain the tridiagonal form of
  359. *> the matrix in A.
  360. *> \endverbatim
  361. *>
  362. *> \param[out] D1
  363. *> \verbatim
  364. *> D1 is DOUBLE PRECISION array of
  365. *> dimension( max(NN) )
  366. *> The eigenvalues of A, as computed by DSTEQR simlutaneously
  367. *> with Z. On exit, the eigenvalues in D1 correspond with the
  368. *> matrix in A.
  369. *> \endverbatim
  370. *>
  371. *> \param[out] D2
  372. *> \verbatim
  373. *> D2 is DOUBLE PRECISION array of
  374. *> dimension( max(NN) )
  375. *> The eigenvalues of A, as computed by DSTEQR if Z is not
  376. *> computed. On exit, the eigenvalues in D2 correspond with
  377. *> the matrix in A.
  378. *> \endverbatim
  379. *>
  380. *> \param[out] D3
  381. *> \verbatim
  382. *> D3 is DOUBLE PRECISION array of
  383. *> dimension( max(NN) )
  384. *> The eigenvalues of A, as computed by DSTERF. On exit, the
  385. *> eigenvalues in D3 correspond with the matrix in A.
  386. *> \endverbatim
  387. *>
  388. *> \param[out] D4
  389. *> \verbatim
  390. *> D4 is DOUBLE PRECISION array of
  391. *> dimension( max(NN) )
  392. *> The eigenvalues of A, as computed by DPTEQR(V).
  393. *> DPTEQR factors S as Z4 D4 Z4*
  394. *> On exit, the eigenvalues in D4 correspond with the matrix in A.
  395. *> \endverbatim
  396. *>
  397. *> \param[out] D5
  398. *> \verbatim
  399. *> D5 is DOUBLE PRECISION array of
  400. *> dimension( max(NN) )
  401. *> The eigenvalues of A, as computed by DPTEQR(N)
  402. *> when Z is not computed. On exit, the
  403. *> eigenvalues in D4 correspond with the matrix in A.
  404. *> \endverbatim
  405. *>
  406. *> \param[out] WA1
  407. *> \verbatim
  408. *> WA1 is DOUBLE PRECISION array of
  409. *> dimension( max(NN) )
  410. *> All eigenvalues of A, computed to high
  411. *> absolute accuracy, with different range options.
  412. *> as computed by DSTEBZ.
  413. *> \endverbatim
  414. *>
  415. *> \param[out] WA2
  416. *> \verbatim
  417. *> WA2 is DOUBLE PRECISION array of
  418. *> dimension( max(NN) )
  419. *> Selected eigenvalues of A, computed to high
  420. *> absolute accuracy, with different range options.
  421. *> as computed by DSTEBZ.
  422. *> Choose random values for IL and IU, and ask for the
  423. *> IL-th through IU-th eigenvalues.
  424. *> \endverbatim
  425. *>
  426. *> \param[out] WA3
  427. *> \verbatim
  428. *> WA3 is DOUBLE PRECISION array of
  429. *> dimension( max(NN) )
  430. *> Selected eigenvalues of A, computed to high
  431. *> absolute accuracy, with different range options.
  432. *> as computed by DSTEBZ.
  433. *> Determine the values VL and VU of the IL-th and IU-th
  434. *> eigenvalues and ask for all eigenvalues in this range.
  435. *> \endverbatim
  436. *>
  437. *> \param[out] WR
  438. *> \verbatim
  439. *> WR is DOUBLE PRECISION array of
  440. *> dimension( max(NN) )
  441. *> All eigenvalues of A, computed to high
  442. *> absolute accuracy, with different options.
  443. *> as computed by DSTEBZ.
  444. *> \endverbatim
  445. *>
  446. *> \param[out] U
  447. *> \verbatim
  448. *> U is DOUBLE PRECISION array of
  449. *> dimension( LDU, max(NN) ).
  450. *> The orthogonal matrix computed by DSYTRD + DORGTR.
  451. *> \endverbatim
  452. *>
  453. *> \param[in] LDU
  454. *> \verbatim
  455. *> LDU is INTEGER
  456. *> The leading dimension of U, Z, and V. It must be at least 1
  457. *> and at least max( NN ).
  458. *> \endverbatim
  459. *>
  460. *> \param[out] V
  461. *> \verbatim
  462. *> V is DOUBLE PRECISION array of
  463. *> dimension( LDU, max(NN) ).
  464. *> The Housholder vectors computed by DSYTRD in reducing A to
  465. *> tridiagonal form. The vectors computed with UPLO='U' are
  466. *> in the upper triangle, and the vectors computed with UPLO='L'
  467. *> are in the lower triangle. (As described in DSYTRD, the
  468. *> sub- and superdiagonal are not set to 1, although the
  469. *> true Householder vector has a 1 in that position. The
  470. *> routines that use V, such as DORGTR, set those entries to
  471. *> 1 before using them, and then restore them later.)
  472. *> \endverbatim
  473. *>
  474. *> \param[out] VP
  475. *> \verbatim
  476. *> VP is DOUBLE PRECISION array of
  477. *> dimension( max(NN)*max(NN+1)/2 )
  478. *> The matrix V stored in packed format.
  479. *> \endverbatim
  480. *>
  481. *> \param[out] TAU
  482. *> \verbatim
  483. *> TAU is DOUBLE PRECISION array of
  484. *> dimension( max(NN) )
  485. *> The Householder factors computed by DSYTRD in reducing A
  486. *> to tridiagonal form.
  487. *> \endverbatim
  488. *>
  489. *> \param[out] Z
  490. *> \verbatim
  491. *> Z is DOUBLE PRECISION array of
  492. *> dimension( LDU, max(NN) ).
  493. *> The orthogonal matrix of eigenvectors computed by DSTEQR,
  494. *> DPTEQR, and DSTEIN.
  495. *> \endverbatim
  496. *>
  497. *> \param[out] WORK
  498. *> \verbatim
  499. *> WORK is DOUBLE PRECISION array of
  500. *> dimension( LWORK )
  501. *> \endverbatim
  502. *>
  503. *> \param[in] LWORK
  504. *> \verbatim
  505. *> LWORK is INTEGER
  506. *> The number of entries in WORK. This must be at least
  507. *> 1 + 4 * Nmax + 2 * Nmax * lg Nmax + 3 * Nmax**2
  508. *> where Nmax = max( NN(j), 2 ) and lg = log base 2.
  509. *> \endverbatim
  510. *>
  511. *> \param[out] IWORK
  512. *> \verbatim
  513. *> IWORK is INTEGER array,
  514. *> Workspace.
  515. *> \endverbatim
  516. *>
  517. *> \param[out] LIWORK
  518. *> \verbatim
  519. *> LIWORK is INTEGER
  520. *> The number of entries in IWORK. This must be at least
  521. *> 6 + 6*Nmax + 5 * Nmax * lg Nmax
  522. *> where Nmax = max( NN(j), 2 ) and lg = log base 2.
  523. *> \endverbatim
  524. *>
  525. *> \param[out] RESULT
  526. *> \verbatim
  527. *> RESULT is DOUBLE PRECISION array, dimension (26)
  528. *> The values computed by the tests described above.
  529. *> The values are currently limited to 1/ulp, to avoid
  530. *> overflow.
  531. *> \endverbatim
  532. *>
  533. *> \param[out] INFO
  534. *> \verbatim
  535. *> INFO is INTEGER
  536. *> If 0, then everything ran OK.
  537. *> -1: NSIZES < 0
  538. *> -2: Some NN(j) < 0
  539. *> -3: NTYPES < 0
  540. *> -5: THRESH < 0
  541. *> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
  542. *> -23: LDU < 1 or LDU < NMAX.
  543. *> -29: LWORK too small.
  544. *> If DLATMR, SLATMS, DSYTRD, DORGTR, DSTEQR, SSTERF,
  545. *> or DORMC2 returns an error code, the
  546. *> absolute value of it is returned.
  547. *>
  548. *>-----------------------------------------------------------------------
  549. *>
  550. *> Some Local Variables and Parameters:
  551. *> ---- ----- --------- --- ----------
  552. *> ZERO, ONE Real 0 and 1.
  553. *> MAXTYP The number of types defined.
  554. *> NTEST The number of tests performed, or which can
  555. *> be performed so far, for the current matrix.
  556. *> NTESTT The total number of tests performed so far.
  557. *> NBLOCK Blocksize as returned by ENVIR.
  558. *> NMAX Largest value in NN.
  559. *> NMATS The number of matrices generated so far.
  560. *> NERRS The number of tests which have exceeded THRESH
  561. *> so far.
  562. *> COND, IMODE Values to be passed to the matrix generators.
  563. *> ANORM Norm of A; passed to matrix generators.
  564. *>
  565. *> OVFL, UNFL Overflow and underflow thresholds.
  566. *> ULP, ULPINV Finest relative precision and its inverse.
  567. *> RTOVFL, RTUNFL Square roots of the previous 2 values.
  568. *> The following four arrays decode JTYPE:
  569. *> KTYPE(j) The general type (1-10) for type "j".
  570. *> KMODE(j) The MODE value to be passed to the matrix
  571. *> generator for type "j".
  572. *> KMAGN(j) The order of magnitude ( O(1),
  573. *> O(overflow^(1/2) ), O(underflow^(1/2) )
  574. *> \endverbatim
  575. *
  576. * Authors:
  577. * ========
  578. *
  579. *> \author Univ. of Tennessee
  580. *> \author Univ. of California Berkeley
  581. *> \author Univ. of Colorado Denver
  582. *> \author NAG Ltd.
  583. *
  584. *> \ingroup double_eig
  585. *
  586. * =====================================================================
  587. SUBROUTINE DCHKST( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  588. $ NOUNIT, A, LDA, AP, SD, SE, D1, D2, D3, D4, D5,
  589. $ WA1, WA2, WA3, WR, U, LDU, V, VP, TAU, Z, WORK,
  590. $ LWORK, IWORK, LIWORK, RESULT, INFO )
  591. *
  592. * -- LAPACK test routine --
  593. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  594. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  595. *
  596. * .. Scalar Arguments ..
  597. INTEGER INFO, LDA, LDU, LIWORK, LWORK, NOUNIT, NSIZES,
  598. $ NTYPES
  599. DOUBLE PRECISION THRESH
  600. * ..
  601. * .. Array Arguments ..
  602. LOGICAL DOTYPE( * )
  603. INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  604. DOUBLE PRECISION A( LDA, * ), AP( * ), D1( * ), D2( * ),
  605. $ D3( * ), D4( * ), D5( * ), RESULT( * ),
  606. $ SD( * ), SE( * ), TAU( * ), U( LDU, * ),
  607. $ V( LDU, * ), VP( * ), WA1( * ), WA2( * ),
  608. $ WA3( * ), WORK( * ), WR( * ), Z( LDU, * )
  609. * ..
  610. *
  611. * =====================================================================
  612. *
  613. * .. Parameters ..
  614. DOUBLE PRECISION ZERO, ONE, TWO, EIGHT, TEN, HUN
  615. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
  616. $ EIGHT = 8.0D0, TEN = 10.0D0, HUN = 100.0D0 )
  617. DOUBLE PRECISION HALF
  618. PARAMETER ( HALF = ONE / TWO )
  619. INTEGER MAXTYP
  620. PARAMETER ( MAXTYP = 21 )
  621. LOGICAL SRANGE
  622. PARAMETER ( SRANGE = .FALSE. )
  623. LOGICAL SREL
  624. PARAMETER ( SREL = .FALSE. )
  625. * ..
  626. * .. Local Scalars ..
  627. LOGICAL BADNN, TRYRAC
  628. INTEGER I, IINFO, IL, IMODE, ITEMP, ITYPE, IU, J, JC,
  629. $ JR, JSIZE, JTYPE, LGN, LIWEDC, LOG2UI, LWEDC,
  630. $ M, M2, M3, MTYPES, N, NAP, NBLOCK, NERRS,
  631. $ NMATS, NMAX, NSPLIT, NTEST, NTESTT
  632. DOUBLE PRECISION ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
  633. $ RTUNFL, TEMP1, TEMP2, TEMP3, TEMP4, ULP,
  634. $ ULPINV, UNFL, VL, VU
  635. * ..
  636. * .. Local Arrays ..
  637. INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
  638. $ KMAGN( MAXTYP ), KMODE( MAXTYP ),
  639. $ KTYPE( MAXTYP )
  640. DOUBLE PRECISION DUMMA( 1 )
  641. * ..
  642. * .. External Functions ..
  643. INTEGER ILAENV
  644. DOUBLE PRECISION DLAMCH, DLARND, DSXT1
  645. EXTERNAL ILAENV, DLAMCH, DLARND, DSXT1
  646. * ..
  647. * .. External Subroutines ..
  648. EXTERNAL DCOPY, DLABAD, DLACPY, DLASET, DLASUM, DLATMR,
  649. $ DLATMS, DOPGTR, DORGTR, DPTEQR, DSPT21, DSPTRD,
  650. $ DSTEBZ, DSTECH, DSTEDC, DSTEMR, DSTEIN, DSTEQR,
  651. $ DSTERF, DSTT21, DSTT22, DSYT21, DSYTRD, XERBLA
  652. * ..
  653. * .. Intrinsic Functions ..
  654. INTRINSIC ABS, DBLE, INT, LOG, MAX, MIN, SQRT
  655. * ..
  656. * .. Data statements ..
  657. DATA KTYPE / 1, 2, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 8,
  658. $ 8, 8, 9, 9, 9, 9, 9, 10 /
  659. DATA KMAGN / 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
  660. $ 2, 3, 1, 1, 1, 2, 3, 1 /
  661. DATA KMODE / 0, 0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
  662. $ 0, 0, 4, 3, 1, 4, 4, 3 /
  663. * ..
  664. * .. Executable Statements ..
  665. *
  666. * Keep ftnchek happy
  667. IDUMMA( 1 ) = 1
  668. *
  669. * Check for errors
  670. *
  671. NTESTT = 0
  672. INFO = 0
  673. *
  674. * Important constants
  675. *
  676. BADNN = .FALSE.
  677. TRYRAC = .TRUE.
  678. NMAX = 1
  679. DO 10 J = 1, NSIZES
  680. NMAX = MAX( NMAX, NN( J ) )
  681. IF( NN( J ).LT.0 )
  682. $ BADNN = .TRUE.
  683. 10 CONTINUE
  684. *
  685. NBLOCK = ILAENV( 1, 'DSYTRD', 'L', NMAX, -1, -1, -1 )
  686. NBLOCK = MIN( NMAX, MAX( 1, NBLOCK ) )
  687. *
  688. * Check for errors
  689. *
  690. IF( NSIZES.LT.0 ) THEN
  691. INFO = -1
  692. ELSE IF( BADNN ) THEN
  693. INFO = -2
  694. ELSE IF( NTYPES.LT.0 ) THEN
  695. INFO = -3
  696. ELSE IF( LDA.LT.NMAX ) THEN
  697. INFO = -9
  698. ELSE IF( LDU.LT.NMAX ) THEN
  699. INFO = -23
  700. ELSE IF( 2*MAX( 2, NMAX )**2.GT.LWORK ) THEN
  701. INFO = -29
  702. END IF
  703. *
  704. IF( INFO.NE.0 ) THEN
  705. CALL XERBLA( 'DCHKST', -INFO )
  706. RETURN
  707. END IF
  708. *
  709. * Quick return if possible
  710. *
  711. IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
  712. $ RETURN
  713. *
  714. * More Important constants
  715. *
  716. UNFL = DLAMCH( 'Safe minimum' )
  717. OVFL = ONE / UNFL
  718. CALL DLABAD( UNFL, OVFL )
  719. ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
  720. ULPINV = ONE / ULP
  721. LOG2UI = INT( LOG( ULPINV ) / LOG( TWO ) )
  722. RTUNFL = SQRT( UNFL )
  723. RTOVFL = SQRT( OVFL )
  724. *
  725. * Loop over sizes, types
  726. *
  727. DO 20 I = 1, 4
  728. ISEED2( I ) = ISEED( I )
  729. 20 CONTINUE
  730. NERRS = 0
  731. NMATS = 0
  732. *
  733. DO 310 JSIZE = 1, NSIZES
  734. N = NN( JSIZE )
  735. IF( N.GT.0 ) THEN
  736. LGN = INT( LOG( DBLE( N ) ) / LOG( TWO ) )
  737. IF( 2**LGN.LT.N )
  738. $ LGN = LGN + 1
  739. IF( 2**LGN.LT.N )
  740. $ LGN = LGN + 1
  741. LWEDC = 1 + 4*N + 2*N*LGN + 4*N**2
  742. LIWEDC = 6 + 6*N + 5*N*LGN
  743. ELSE
  744. LWEDC = 8
  745. LIWEDC = 12
  746. END IF
  747. NAP = ( N*( N+1 ) ) / 2
  748. ANINV = ONE / DBLE( MAX( 1, N ) )
  749. *
  750. IF( NSIZES.NE.1 ) THEN
  751. MTYPES = MIN( MAXTYP, NTYPES )
  752. ELSE
  753. MTYPES = MIN( MAXTYP+1, NTYPES )
  754. END IF
  755. *
  756. DO 300 JTYPE = 1, MTYPES
  757. IF( .NOT.DOTYPE( JTYPE ) )
  758. $ GO TO 300
  759. NMATS = NMATS + 1
  760. NTEST = 0
  761. *
  762. DO 30 J = 1, 4
  763. IOLDSD( J ) = ISEED( J )
  764. 30 CONTINUE
  765. *
  766. * Compute "A"
  767. *
  768. * Control parameters:
  769. *
  770. * KMAGN KMODE KTYPE
  771. * =1 O(1) clustered 1 zero
  772. * =2 large clustered 2 identity
  773. * =3 small exponential (none)
  774. * =4 arithmetic diagonal, (w/ eigenvalues)
  775. * =5 random log symmetric, w/ eigenvalues
  776. * =6 random (none)
  777. * =7 random diagonal
  778. * =8 random symmetric
  779. * =9 positive definite
  780. * =10 diagonally dominant tridiagonal
  781. *
  782. IF( MTYPES.GT.MAXTYP )
  783. $ GO TO 100
  784. *
  785. ITYPE = KTYPE( JTYPE )
  786. IMODE = KMODE( JTYPE )
  787. *
  788. * Compute norm
  789. *
  790. GO TO ( 40, 50, 60 )KMAGN( JTYPE )
  791. *
  792. 40 CONTINUE
  793. ANORM = ONE
  794. GO TO 70
  795. *
  796. 50 CONTINUE
  797. ANORM = ( RTOVFL*ULP )*ANINV
  798. GO TO 70
  799. *
  800. 60 CONTINUE
  801. ANORM = RTUNFL*N*ULPINV
  802. GO TO 70
  803. *
  804. 70 CONTINUE
  805. *
  806. CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
  807. IINFO = 0
  808. IF( JTYPE.LE.15 ) THEN
  809. COND = ULPINV
  810. ELSE
  811. COND = ULPINV*ANINV / TEN
  812. END IF
  813. *
  814. * Special Matrices -- Identity & Jordan block
  815. *
  816. * Zero
  817. *
  818. IF( ITYPE.EQ.1 ) THEN
  819. IINFO = 0
  820. *
  821. ELSE IF( ITYPE.EQ.2 ) THEN
  822. *
  823. * Identity
  824. *
  825. DO 80 JC = 1, N
  826. A( JC, JC ) = ANORM
  827. 80 CONTINUE
  828. *
  829. ELSE IF( ITYPE.EQ.4 ) THEN
  830. *
  831. * Diagonal Matrix, [Eigen]values Specified
  832. *
  833. CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
  834. $ ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
  835. $ IINFO )
  836. *
  837. *
  838. ELSE IF( ITYPE.EQ.5 ) THEN
  839. *
  840. * Symmetric, eigenvalues specified
  841. *
  842. CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
  843. $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
  844. $ IINFO )
  845. *
  846. ELSE IF( ITYPE.EQ.7 ) THEN
  847. *
  848. * Diagonal, random eigenvalues
  849. *
  850. CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
  851. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  852. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
  853. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  854. *
  855. ELSE IF( ITYPE.EQ.8 ) THEN
  856. *
  857. * Symmetric, random eigenvalues
  858. *
  859. CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
  860. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  861. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
  862. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  863. *
  864. ELSE IF( ITYPE.EQ.9 ) THEN
  865. *
  866. * Positive definite, eigenvalues specified.
  867. *
  868. CALL DLATMS( N, N, 'S', ISEED, 'P', WORK, IMODE, COND,
  869. $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
  870. $ IINFO )
  871. *
  872. ELSE IF( ITYPE.EQ.10 ) THEN
  873. *
  874. * Positive definite tridiagonal, eigenvalues specified.
  875. *
  876. CALL DLATMS( N, N, 'S', ISEED, 'P', WORK, IMODE, COND,
  877. $ ANORM, 1, 1, 'N', A, LDA, WORK( N+1 ),
  878. $ IINFO )
  879. DO 90 I = 2, N
  880. TEMP1 = ABS( A( I-1, I ) ) /
  881. $ SQRT( ABS( A( I-1, I-1 )*A( I, I ) ) )
  882. IF( TEMP1.GT.HALF ) THEN
  883. A( I-1, I ) = HALF*SQRT( ABS( A( I-1, I-1 )*A( I,
  884. $ I ) ) )
  885. A( I, I-1 ) = A( I-1, I )
  886. END IF
  887. 90 CONTINUE
  888. *
  889. ELSE
  890. *
  891. IINFO = 1
  892. END IF
  893. *
  894. IF( IINFO.NE.0 ) THEN
  895. WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
  896. $ IOLDSD
  897. INFO = ABS( IINFO )
  898. RETURN
  899. END IF
  900. *
  901. 100 CONTINUE
  902. *
  903. * Call DSYTRD and DORGTR to compute S and U from
  904. * upper triangle.
  905. *
  906. CALL DLACPY( 'U', N, N, A, LDA, V, LDU )
  907. *
  908. NTEST = 1
  909. CALL DSYTRD( 'U', N, V, LDU, SD, SE, TAU, WORK, LWORK,
  910. $ IINFO )
  911. *
  912. IF( IINFO.NE.0 ) THEN
  913. WRITE( NOUNIT, FMT = 9999 )'DSYTRD(U)', IINFO, N, JTYPE,
  914. $ IOLDSD
  915. INFO = ABS( IINFO )
  916. IF( IINFO.LT.0 ) THEN
  917. RETURN
  918. ELSE
  919. RESULT( 1 ) = ULPINV
  920. GO TO 280
  921. END IF
  922. END IF
  923. *
  924. CALL DLACPY( 'U', N, N, V, LDU, U, LDU )
  925. *
  926. NTEST = 2
  927. CALL DORGTR( 'U', N, U, LDU, TAU, WORK, LWORK, IINFO )
  928. IF( IINFO.NE.0 ) THEN
  929. WRITE( NOUNIT, FMT = 9999 )'DORGTR(U)', IINFO, N, JTYPE,
  930. $ IOLDSD
  931. INFO = ABS( IINFO )
  932. IF( IINFO.LT.0 ) THEN
  933. RETURN
  934. ELSE
  935. RESULT( 2 ) = ULPINV
  936. GO TO 280
  937. END IF
  938. END IF
  939. *
  940. * Do tests 1 and 2
  941. *
  942. CALL DSYT21( 2, 'Upper', N, 1, A, LDA, SD, SE, U, LDU, V,
  943. $ LDU, TAU, WORK, RESULT( 1 ) )
  944. CALL DSYT21( 3, 'Upper', N, 1, A, LDA, SD, SE, U, LDU, V,
  945. $ LDU, TAU, WORK, RESULT( 2 ) )
  946. *
  947. * Call DSYTRD and DORGTR to compute S and U from
  948. * lower triangle, do tests.
  949. *
  950. CALL DLACPY( 'L', N, N, A, LDA, V, LDU )
  951. *
  952. NTEST = 3
  953. CALL DSYTRD( 'L', N, V, LDU, SD, SE, TAU, WORK, LWORK,
  954. $ IINFO )
  955. *
  956. IF( IINFO.NE.0 ) THEN
  957. WRITE( NOUNIT, FMT = 9999 )'DSYTRD(L)', IINFO, N, JTYPE,
  958. $ IOLDSD
  959. INFO = ABS( IINFO )
  960. IF( IINFO.LT.0 ) THEN
  961. RETURN
  962. ELSE
  963. RESULT( 3 ) = ULPINV
  964. GO TO 280
  965. END IF
  966. END IF
  967. *
  968. CALL DLACPY( 'L', N, N, V, LDU, U, LDU )
  969. *
  970. NTEST = 4
  971. CALL DORGTR( 'L', N, U, LDU, TAU, WORK, LWORK, IINFO )
  972. IF( IINFO.NE.0 ) THEN
  973. WRITE( NOUNIT, FMT = 9999 )'DORGTR(L)', IINFO, N, JTYPE,
  974. $ IOLDSD
  975. INFO = ABS( IINFO )
  976. IF( IINFO.LT.0 ) THEN
  977. RETURN
  978. ELSE
  979. RESULT( 4 ) = ULPINV
  980. GO TO 280
  981. END IF
  982. END IF
  983. *
  984. CALL DSYT21( 2, 'Lower', N, 1, A, LDA, SD, SE, U, LDU, V,
  985. $ LDU, TAU, WORK, RESULT( 3 ) )
  986. CALL DSYT21( 3, 'Lower', N, 1, A, LDA, SD, SE, U, LDU, V,
  987. $ LDU, TAU, WORK, RESULT( 4 ) )
  988. *
  989. * Store the upper triangle of A in AP
  990. *
  991. I = 0
  992. DO 120 JC = 1, N
  993. DO 110 JR = 1, JC
  994. I = I + 1
  995. AP( I ) = A( JR, JC )
  996. 110 CONTINUE
  997. 120 CONTINUE
  998. *
  999. * Call DSPTRD and DOPGTR to compute S and U from AP
  1000. *
  1001. CALL DCOPY( NAP, AP, 1, VP, 1 )
  1002. *
  1003. NTEST = 5
  1004. CALL DSPTRD( 'U', N, VP, SD, SE, TAU, IINFO )
  1005. *
  1006. IF( IINFO.NE.0 ) THEN
  1007. WRITE( NOUNIT, FMT = 9999 )'DSPTRD(U)', IINFO, N, JTYPE,
  1008. $ IOLDSD
  1009. INFO = ABS( IINFO )
  1010. IF( IINFO.LT.0 ) THEN
  1011. RETURN
  1012. ELSE
  1013. RESULT( 5 ) = ULPINV
  1014. GO TO 280
  1015. END IF
  1016. END IF
  1017. *
  1018. NTEST = 6
  1019. CALL DOPGTR( 'U', N, VP, TAU, U, LDU, WORK, IINFO )
  1020. IF( IINFO.NE.0 ) THEN
  1021. WRITE( NOUNIT, FMT = 9999 )'DOPGTR(U)', IINFO, N, JTYPE,
  1022. $ IOLDSD
  1023. INFO = ABS( IINFO )
  1024. IF( IINFO.LT.0 ) THEN
  1025. RETURN
  1026. ELSE
  1027. RESULT( 6 ) = ULPINV
  1028. GO TO 280
  1029. END IF
  1030. END IF
  1031. *
  1032. * Do tests 5 and 6
  1033. *
  1034. CALL DSPT21( 2, 'Upper', N, 1, AP, SD, SE, U, LDU, VP, TAU,
  1035. $ WORK, RESULT( 5 ) )
  1036. CALL DSPT21( 3, 'Upper', N, 1, AP, SD, SE, U, LDU, VP, TAU,
  1037. $ WORK, RESULT( 6 ) )
  1038. *
  1039. * Store the lower triangle of A in AP
  1040. *
  1041. I = 0
  1042. DO 140 JC = 1, N
  1043. DO 130 JR = JC, N
  1044. I = I + 1
  1045. AP( I ) = A( JR, JC )
  1046. 130 CONTINUE
  1047. 140 CONTINUE
  1048. *
  1049. * Call DSPTRD and DOPGTR to compute S and U from AP
  1050. *
  1051. CALL DCOPY( NAP, AP, 1, VP, 1 )
  1052. *
  1053. NTEST = 7
  1054. CALL DSPTRD( 'L', N, VP, SD, SE, TAU, IINFO )
  1055. *
  1056. IF( IINFO.NE.0 ) THEN
  1057. WRITE( NOUNIT, FMT = 9999 )'DSPTRD(L)', IINFO, N, JTYPE,
  1058. $ IOLDSD
  1059. INFO = ABS( IINFO )
  1060. IF( IINFO.LT.0 ) THEN
  1061. RETURN
  1062. ELSE
  1063. RESULT( 7 ) = ULPINV
  1064. GO TO 280
  1065. END IF
  1066. END IF
  1067. *
  1068. NTEST = 8
  1069. CALL DOPGTR( 'L', N, VP, TAU, U, LDU, WORK, IINFO )
  1070. IF( IINFO.NE.0 ) THEN
  1071. WRITE( NOUNIT, FMT = 9999 )'DOPGTR(L)', IINFO, N, JTYPE,
  1072. $ IOLDSD
  1073. INFO = ABS( IINFO )
  1074. IF( IINFO.LT.0 ) THEN
  1075. RETURN
  1076. ELSE
  1077. RESULT( 8 ) = ULPINV
  1078. GO TO 280
  1079. END IF
  1080. END IF
  1081. *
  1082. CALL DSPT21( 2, 'Lower', N, 1, AP, SD, SE, U, LDU, VP, TAU,
  1083. $ WORK, RESULT( 7 ) )
  1084. CALL DSPT21( 3, 'Lower', N, 1, AP, SD, SE, U, LDU, VP, TAU,
  1085. $ WORK, RESULT( 8 ) )
  1086. *
  1087. * Call DSTEQR to compute D1, D2, and Z, do tests.
  1088. *
  1089. * Compute D1 and Z
  1090. *
  1091. CALL DCOPY( N, SD, 1, D1, 1 )
  1092. IF( N.GT.0 )
  1093. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1094. CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
  1095. *
  1096. NTEST = 9
  1097. CALL DSTEQR( 'V', N, D1, WORK, Z, LDU, WORK( N+1 ), IINFO )
  1098. IF( IINFO.NE.0 ) THEN
  1099. WRITE( NOUNIT, FMT = 9999 )'DSTEQR(V)', IINFO, N, JTYPE,
  1100. $ IOLDSD
  1101. INFO = ABS( IINFO )
  1102. IF( IINFO.LT.0 ) THEN
  1103. RETURN
  1104. ELSE
  1105. RESULT( 9 ) = ULPINV
  1106. GO TO 280
  1107. END IF
  1108. END IF
  1109. *
  1110. * Compute D2
  1111. *
  1112. CALL DCOPY( N, SD, 1, D2, 1 )
  1113. IF( N.GT.0 )
  1114. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1115. *
  1116. NTEST = 11
  1117. CALL DSTEQR( 'N', N, D2, WORK, WORK( N+1 ), LDU,
  1118. $ WORK( N+1 ), IINFO )
  1119. IF( IINFO.NE.0 ) THEN
  1120. WRITE( NOUNIT, FMT = 9999 )'DSTEQR(N)', IINFO, N, JTYPE,
  1121. $ IOLDSD
  1122. INFO = ABS( IINFO )
  1123. IF( IINFO.LT.0 ) THEN
  1124. RETURN
  1125. ELSE
  1126. RESULT( 11 ) = ULPINV
  1127. GO TO 280
  1128. END IF
  1129. END IF
  1130. *
  1131. * Compute D3 (using PWK method)
  1132. *
  1133. CALL DCOPY( N, SD, 1, D3, 1 )
  1134. IF( N.GT.0 )
  1135. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1136. *
  1137. NTEST = 12
  1138. CALL DSTERF( N, D3, WORK, IINFO )
  1139. IF( IINFO.NE.0 ) THEN
  1140. WRITE( NOUNIT, FMT = 9999 )'DSTERF', IINFO, N, JTYPE,
  1141. $ IOLDSD
  1142. INFO = ABS( IINFO )
  1143. IF( IINFO.LT.0 ) THEN
  1144. RETURN
  1145. ELSE
  1146. RESULT( 12 ) = ULPINV
  1147. GO TO 280
  1148. END IF
  1149. END IF
  1150. *
  1151. * Do Tests 9 and 10
  1152. *
  1153. CALL DSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
  1154. $ RESULT( 9 ) )
  1155. *
  1156. * Do Tests 11 and 12
  1157. *
  1158. TEMP1 = ZERO
  1159. TEMP2 = ZERO
  1160. TEMP3 = ZERO
  1161. TEMP4 = ZERO
  1162. *
  1163. DO 150 J = 1, N
  1164. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
  1165. TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  1166. TEMP3 = MAX( TEMP3, ABS( D1( J ) ), ABS( D3( J ) ) )
  1167. TEMP4 = MAX( TEMP4, ABS( D1( J )-D3( J ) ) )
  1168. 150 CONTINUE
  1169. *
  1170. RESULT( 11 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
  1171. RESULT( 12 ) = TEMP4 / MAX( UNFL, ULP*MAX( TEMP3, TEMP4 ) )
  1172. *
  1173. * Do Test 13 -- Sturm Sequence Test of Eigenvalues
  1174. * Go up by factors of two until it succeeds
  1175. *
  1176. NTEST = 13
  1177. TEMP1 = THRESH*( HALF-ULP )
  1178. *
  1179. DO 160 J = 0, LOG2UI
  1180. CALL DSTECH( N, SD, SE, D1, TEMP1, WORK, IINFO )
  1181. IF( IINFO.EQ.0 )
  1182. $ GO TO 170
  1183. TEMP1 = TEMP1*TWO
  1184. 160 CONTINUE
  1185. *
  1186. 170 CONTINUE
  1187. RESULT( 13 ) = TEMP1
  1188. *
  1189. * For positive definite matrices ( JTYPE.GT.15 ) call DPTEQR
  1190. * and do tests 14, 15, and 16 .
  1191. *
  1192. IF( JTYPE.GT.15 ) THEN
  1193. *
  1194. * Compute D4 and Z4
  1195. *
  1196. CALL DCOPY( N, SD, 1, D4, 1 )
  1197. IF( N.GT.0 )
  1198. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1199. CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
  1200. *
  1201. NTEST = 14
  1202. CALL DPTEQR( 'V', N, D4, WORK, Z, LDU, WORK( N+1 ),
  1203. $ IINFO )
  1204. IF( IINFO.NE.0 ) THEN
  1205. WRITE( NOUNIT, FMT = 9999 )'DPTEQR(V)', IINFO, N,
  1206. $ JTYPE, IOLDSD
  1207. INFO = ABS( IINFO )
  1208. IF( IINFO.LT.0 ) THEN
  1209. RETURN
  1210. ELSE
  1211. RESULT( 14 ) = ULPINV
  1212. GO TO 280
  1213. END IF
  1214. END IF
  1215. *
  1216. * Do Tests 14 and 15
  1217. *
  1218. CALL DSTT21( N, 0, SD, SE, D4, DUMMA, Z, LDU, WORK,
  1219. $ RESULT( 14 ) )
  1220. *
  1221. * Compute D5
  1222. *
  1223. CALL DCOPY( N, SD, 1, D5, 1 )
  1224. IF( N.GT.0 )
  1225. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1226. *
  1227. NTEST = 16
  1228. CALL DPTEQR( 'N', N, D5, WORK, Z, LDU, WORK( N+1 ),
  1229. $ IINFO )
  1230. IF( IINFO.NE.0 ) THEN
  1231. WRITE( NOUNIT, FMT = 9999 )'DPTEQR(N)', IINFO, N,
  1232. $ JTYPE, IOLDSD
  1233. INFO = ABS( IINFO )
  1234. IF( IINFO.LT.0 ) THEN
  1235. RETURN
  1236. ELSE
  1237. RESULT( 16 ) = ULPINV
  1238. GO TO 280
  1239. END IF
  1240. END IF
  1241. *
  1242. * Do Test 16
  1243. *
  1244. TEMP1 = ZERO
  1245. TEMP2 = ZERO
  1246. DO 180 J = 1, N
  1247. TEMP1 = MAX( TEMP1, ABS( D4( J ) ), ABS( D5( J ) ) )
  1248. TEMP2 = MAX( TEMP2, ABS( D4( J )-D5( J ) ) )
  1249. 180 CONTINUE
  1250. *
  1251. RESULT( 16 ) = TEMP2 / MAX( UNFL,
  1252. $ HUN*ULP*MAX( TEMP1, TEMP2 ) )
  1253. ELSE
  1254. RESULT( 14 ) = ZERO
  1255. RESULT( 15 ) = ZERO
  1256. RESULT( 16 ) = ZERO
  1257. END IF
  1258. *
  1259. * Call DSTEBZ with different options and do tests 17-18.
  1260. *
  1261. * If S is positive definite and diagonally dominant,
  1262. * ask for all eigenvalues with high relative accuracy.
  1263. *
  1264. VL = ZERO
  1265. VU = ZERO
  1266. IL = 0
  1267. IU = 0
  1268. IF( JTYPE.EQ.21 ) THEN
  1269. NTEST = 17
  1270. ABSTOL = UNFL + UNFL
  1271. CALL DSTEBZ( 'A', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
  1272. $ M, NSPLIT, WR, IWORK( 1 ), IWORK( N+1 ),
  1273. $ WORK, IWORK( 2*N+1 ), IINFO )
  1274. IF( IINFO.NE.0 ) THEN
  1275. WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(A,rel)', IINFO, N,
  1276. $ JTYPE, IOLDSD
  1277. INFO = ABS( IINFO )
  1278. IF( IINFO.LT.0 ) THEN
  1279. RETURN
  1280. ELSE
  1281. RESULT( 17 ) = ULPINV
  1282. GO TO 280
  1283. END IF
  1284. END IF
  1285. *
  1286. * Do test 17
  1287. *
  1288. TEMP2 = TWO*( TWO*N-ONE )*ULP*( ONE+EIGHT*HALF**2 ) /
  1289. $ ( ONE-HALF )**4
  1290. *
  1291. TEMP1 = ZERO
  1292. DO 190 J = 1, N
  1293. TEMP1 = MAX( TEMP1, ABS( D4( J )-WR( N-J+1 ) ) /
  1294. $ ( ABSTOL+ABS( D4( J ) ) ) )
  1295. 190 CONTINUE
  1296. *
  1297. RESULT( 17 ) = TEMP1 / TEMP2
  1298. ELSE
  1299. RESULT( 17 ) = ZERO
  1300. END IF
  1301. *
  1302. * Now ask for all eigenvalues with high absolute accuracy.
  1303. *
  1304. NTEST = 18
  1305. ABSTOL = UNFL + UNFL
  1306. CALL DSTEBZ( 'A', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE, M,
  1307. $ NSPLIT, WA1, IWORK( 1 ), IWORK( N+1 ), WORK,
  1308. $ IWORK( 2*N+1 ), IINFO )
  1309. IF( IINFO.NE.0 ) THEN
  1310. WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(A)', IINFO, N, JTYPE,
  1311. $ IOLDSD
  1312. INFO = ABS( IINFO )
  1313. IF( IINFO.LT.0 ) THEN
  1314. RETURN
  1315. ELSE
  1316. RESULT( 18 ) = ULPINV
  1317. GO TO 280
  1318. END IF
  1319. END IF
  1320. *
  1321. * Do test 18
  1322. *
  1323. TEMP1 = ZERO
  1324. TEMP2 = ZERO
  1325. DO 200 J = 1, N
  1326. TEMP1 = MAX( TEMP1, ABS( D3( J ) ), ABS( WA1( J ) ) )
  1327. TEMP2 = MAX( TEMP2, ABS( D3( J )-WA1( J ) ) )
  1328. 200 CONTINUE
  1329. *
  1330. RESULT( 18 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
  1331. *
  1332. * Choose random values for IL and IU, and ask for the
  1333. * IL-th through IU-th eigenvalues.
  1334. *
  1335. NTEST = 19
  1336. IF( N.LE.1 ) THEN
  1337. IL = 1
  1338. IU = N
  1339. ELSE
  1340. IL = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
  1341. IU = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
  1342. IF( IU.LT.IL ) THEN
  1343. ITEMP = IU
  1344. IU = IL
  1345. IL = ITEMP
  1346. END IF
  1347. END IF
  1348. *
  1349. CALL DSTEBZ( 'I', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
  1350. $ M2, NSPLIT, WA2, IWORK( 1 ), IWORK( N+1 ),
  1351. $ WORK, IWORK( 2*N+1 ), IINFO )
  1352. IF( IINFO.NE.0 ) THEN
  1353. WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(I)', IINFO, N, JTYPE,
  1354. $ IOLDSD
  1355. INFO = ABS( IINFO )
  1356. IF( IINFO.LT.0 ) THEN
  1357. RETURN
  1358. ELSE
  1359. RESULT( 19 ) = ULPINV
  1360. GO TO 280
  1361. END IF
  1362. END IF
  1363. *
  1364. * Determine the values VL and VU of the IL-th and IU-th
  1365. * eigenvalues and ask for all eigenvalues in this range.
  1366. *
  1367. IF( N.GT.0 ) THEN
  1368. IF( IL.NE.1 ) THEN
  1369. VL = WA1( IL ) - MAX( HALF*( WA1( IL )-WA1( IL-1 ) ),
  1370. $ ULP*ANORM, TWO*RTUNFL )
  1371. ELSE
  1372. VL = WA1( 1 ) - MAX( HALF*( WA1( N )-WA1( 1 ) ),
  1373. $ ULP*ANORM, TWO*RTUNFL )
  1374. END IF
  1375. IF( IU.NE.N ) THEN
  1376. VU = WA1( IU ) + MAX( HALF*( WA1( IU+1 )-WA1( IU ) ),
  1377. $ ULP*ANORM, TWO*RTUNFL )
  1378. ELSE
  1379. VU = WA1( N ) + MAX( HALF*( WA1( N )-WA1( 1 ) ),
  1380. $ ULP*ANORM, TWO*RTUNFL )
  1381. END IF
  1382. ELSE
  1383. VL = ZERO
  1384. VU = ONE
  1385. END IF
  1386. *
  1387. CALL DSTEBZ( 'V', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
  1388. $ M3, NSPLIT, WA3, IWORK( 1 ), IWORK( N+1 ),
  1389. $ WORK, IWORK( 2*N+1 ), IINFO )
  1390. IF( IINFO.NE.0 ) THEN
  1391. WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(V)', IINFO, N, JTYPE,
  1392. $ IOLDSD
  1393. INFO = ABS( IINFO )
  1394. IF( IINFO.LT.0 ) THEN
  1395. RETURN
  1396. ELSE
  1397. RESULT( 19 ) = ULPINV
  1398. GO TO 280
  1399. END IF
  1400. END IF
  1401. *
  1402. IF( M3.EQ.0 .AND. N.NE.0 ) THEN
  1403. RESULT( 19 ) = ULPINV
  1404. GO TO 280
  1405. END IF
  1406. *
  1407. * Do test 19
  1408. *
  1409. TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
  1410. TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
  1411. IF( N.GT.0 ) THEN
  1412. TEMP3 = MAX( ABS( WA1( N ) ), ABS( WA1( 1 ) ) )
  1413. ELSE
  1414. TEMP3 = ZERO
  1415. END IF
  1416. *
  1417. RESULT( 19 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, TEMP3*ULP )
  1418. *
  1419. * Call DSTEIN to compute eigenvectors corresponding to
  1420. * eigenvalues in WA1. (First call DSTEBZ again, to make sure
  1421. * it returns these eigenvalues in the correct order.)
  1422. *
  1423. NTEST = 21
  1424. CALL DSTEBZ( 'A', 'B', N, VL, VU, IL, IU, ABSTOL, SD, SE, M,
  1425. $ NSPLIT, WA1, IWORK( 1 ), IWORK( N+1 ), WORK,
  1426. $ IWORK( 2*N+1 ), IINFO )
  1427. IF( IINFO.NE.0 ) THEN
  1428. WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(A,B)', IINFO, N,
  1429. $ JTYPE, IOLDSD
  1430. INFO = ABS( IINFO )
  1431. IF( IINFO.LT.0 ) THEN
  1432. RETURN
  1433. ELSE
  1434. RESULT( 20 ) = ULPINV
  1435. RESULT( 21 ) = ULPINV
  1436. GO TO 280
  1437. END IF
  1438. END IF
  1439. *
  1440. CALL DSTEIN( N, SD, SE, M, WA1, IWORK( 1 ), IWORK( N+1 ), Z,
  1441. $ LDU, WORK, IWORK( 2*N+1 ), IWORK( 3*N+1 ),
  1442. $ IINFO )
  1443. IF( IINFO.NE.0 ) THEN
  1444. WRITE( NOUNIT, FMT = 9999 )'DSTEIN', IINFO, N, JTYPE,
  1445. $ IOLDSD
  1446. INFO = ABS( IINFO )
  1447. IF( IINFO.LT.0 ) THEN
  1448. RETURN
  1449. ELSE
  1450. RESULT( 20 ) = ULPINV
  1451. RESULT( 21 ) = ULPINV
  1452. GO TO 280
  1453. END IF
  1454. END IF
  1455. *
  1456. * Do tests 20 and 21
  1457. *
  1458. CALL DSTT21( N, 0, SD, SE, WA1, DUMMA, Z, LDU, WORK,
  1459. $ RESULT( 20 ) )
  1460. *
  1461. * Call DSTEDC(I) to compute D1 and Z, do tests.
  1462. *
  1463. * Compute D1 and Z
  1464. *
  1465. CALL DCOPY( N, SD, 1, D1, 1 )
  1466. IF( N.GT.0 )
  1467. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1468. CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
  1469. *
  1470. NTEST = 22
  1471. CALL DSTEDC( 'I', N, D1, WORK, Z, LDU, WORK( N+1 ), LWEDC-N,
  1472. $ IWORK, LIWEDC, IINFO )
  1473. IF( IINFO.NE.0 ) THEN
  1474. WRITE( NOUNIT, FMT = 9999 )'DSTEDC(I)', IINFO, N, JTYPE,
  1475. $ IOLDSD
  1476. INFO = ABS( IINFO )
  1477. IF( IINFO.LT.0 ) THEN
  1478. RETURN
  1479. ELSE
  1480. RESULT( 22 ) = ULPINV
  1481. GO TO 280
  1482. END IF
  1483. END IF
  1484. *
  1485. * Do Tests 22 and 23
  1486. *
  1487. CALL DSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
  1488. $ RESULT( 22 ) )
  1489. *
  1490. * Call DSTEDC(V) to compute D1 and Z, do tests.
  1491. *
  1492. * Compute D1 and Z
  1493. *
  1494. CALL DCOPY( N, SD, 1, D1, 1 )
  1495. IF( N.GT.0 )
  1496. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1497. CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
  1498. *
  1499. NTEST = 24
  1500. CALL DSTEDC( 'V', N, D1, WORK, Z, LDU, WORK( N+1 ), LWEDC-N,
  1501. $ IWORK, LIWEDC, IINFO )
  1502. IF( IINFO.NE.0 ) THEN
  1503. WRITE( NOUNIT, FMT = 9999 )'DSTEDC(V)', IINFO, N, JTYPE,
  1504. $ IOLDSD
  1505. INFO = ABS( IINFO )
  1506. IF( IINFO.LT.0 ) THEN
  1507. RETURN
  1508. ELSE
  1509. RESULT( 24 ) = ULPINV
  1510. GO TO 280
  1511. END IF
  1512. END IF
  1513. *
  1514. * Do Tests 24 and 25
  1515. *
  1516. CALL DSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
  1517. $ RESULT( 24 ) )
  1518. *
  1519. * Call DSTEDC(N) to compute D2, do tests.
  1520. *
  1521. * Compute D2
  1522. *
  1523. CALL DCOPY( N, SD, 1, D2, 1 )
  1524. IF( N.GT.0 )
  1525. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1526. CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
  1527. *
  1528. NTEST = 26
  1529. CALL DSTEDC( 'N', N, D2, WORK, Z, LDU, WORK( N+1 ), LWEDC-N,
  1530. $ IWORK, LIWEDC, IINFO )
  1531. IF( IINFO.NE.0 ) THEN
  1532. WRITE( NOUNIT, FMT = 9999 )'DSTEDC(N)', IINFO, N, JTYPE,
  1533. $ IOLDSD
  1534. INFO = ABS( IINFO )
  1535. IF( IINFO.LT.0 ) THEN
  1536. RETURN
  1537. ELSE
  1538. RESULT( 26 ) = ULPINV
  1539. GO TO 280
  1540. END IF
  1541. END IF
  1542. *
  1543. * Do Test 26
  1544. *
  1545. TEMP1 = ZERO
  1546. TEMP2 = ZERO
  1547. *
  1548. DO 210 J = 1, N
  1549. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
  1550. TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  1551. 210 CONTINUE
  1552. *
  1553. RESULT( 26 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
  1554. *
  1555. * Only test DSTEMR if IEEE compliant
  1556. *
  1557. IF( ILAENV( 10, 'DSTEMR', 'VA', 1, 0, 0, 0 ).EQ.1 .AND.
  1558. $ ILAENV( 11, 'DSTEMR', 'VA', 1, 0, 0, 0 ).EQ.1 ) THEN
  1559. *
  1560. * Call DSTEMR, do test 27 (relative eigenvalue accuracy)
  1561. *
  1562. * If S is positive definite and diagonally dominant,
  1563. * ask for all eigenvalues with high relative accuracy.
  1564. *
  1565. VL = ZERO
  1566. VU = ZERO
  1567. IL = 0
  1568. IU = 0
  1569. IF( JTYPE.EQ.21 .AND. SREL ) THEN
  1570. NTEST = 27
  1571. ABSTOL = UNFL + UNFL
  1572. CALL DSTEMR( 'V', 'A', N, SD, SE, VL, VU, IL, IU,
  1573. $ M, WR, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1574. $ WORK, LWORK, IWORK( 2*N+1 ), LWORK-2*N,
  1575. $ IINFO )
  1576. IF( IINFO.NE.0 ) THEN
  1577. WRITE( NOUNIT, FMT = 9999 )'DSTEMR(V,A,rel)',
  1578. $ IINFO, N, JTYPE, IOLDSD
  1579. INFO = ABS( IINFO )
  1580. IF( IINFO.LT.0 ) THEN
  1581. RETURN
  1582. ELSE
  1583. RESULT( 27 ) = ULPINV
  1584. GO TO 270
  1585. END IF
  1586. END IF
  1587. *
  1588. * Do test 27
  1589. *
  1590. TEMP2 = TWO*( TWO*N-ONE )*ULP*( ONE+EIGHT*HALF**2 ) /
  1591. $ ( ONE-HALF )**4
  1592. *
  1593. TEMP1 = ZERO
  1594. DO 220 J = 1, N
  1595. TEMP1 = MAX( TEMP1, ABS( D4( J )-WR( N-J+1 ) ) /
  1596. $ ( ABSTOL+ABS( D4( J ) ) ) )
  1597. 220 CONTINUE
  1598. *
  1599. RESULT( 27 ) = TEMP1 / TEMP2
  1600. *
  1601. IL = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
  1602. IU = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
  1603. IF( IU.LT.IL ) THEN
  1604. ITEMP = IU
  1605. IU = IL
  1606. IL = ITEMP
  1607. END IF
  1608. *
  1609. IF( SRANGE ) THEN
  1610. NTEST = 28
  1611. ABSTOL = UNFL + UNFL
  1612. CALL DSTEMR( 'V', 'I', N, SD, SE, VL, VU, IL, IU,
  1613. $ M, WR, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1614. $ WORK, LWORK, IWORK( 2*N+1 ),
  1615. $ LWORK-2*N, IINFO )
  1616. *
  1617. IF( IINFO.NE.0 ) THEN
  1618. WRITE( NOUNIT, FMT = 9999 )'DSTEMR(V,I,rel)',
  1619. $ IINFO, N, JTYPE, IOLDSD
  1620. INFO = ABS( IINFO )
  1621. IF( IINFO.LT.0 ) THEN
  1622. RETURN
  1623. ELSE
  1624. RESULT( 28 ) = ULPINV
  1625. GO TO 270
  1626. END IF
  1627. END IF
  1628. *
  1629. *
  1630. * Do test 28
  1631. *
  1632. TEMP2 = TWO*( TWO*N-ONE )*ULP*
  1633. $ ( ONE+EIGHT*HALF**2 ) / ( ONE-HALF )**4
  1634. *
  1635. TEMP1 = ZERO
  1636. DO 230 J = IL, IU
  1637. TEMP1 = MAX( TEMP1, ABS( WR( J-IL+1 )-D4( N-J+
  1638. $ 1 ) ) / ( ABSTOL+ABS( WR( J-IL+1 ) ) ) )
  1639. 230 CONTINUE
  1640. *
  1641. RESULT( 28 ) = TEMP1 / TEMP2
  1642. ELSE
  1643. RESULT( 28 ) = ZERO
  1644. END IF
  1645. ELSE
  1646. RESULT( 27 ) = ZERO
  1647. RESULT( 28 ) = ZERO
  1648. END IF
  1649. *
  1650. * Call DSTEMR(V,I) to compute D1 and Z, do tests.
  1651. *
  1652. * Compute D1 and Z
  1653. *
  1654. CALL DCOPY( N, SD, 1, D5, 1 )
  1655. IF( N.GT.0 )
  1656. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1657. CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
  1658. *
  1659. IF( SRANGE ) THEN
  1660. NTEST = 29
  1661. IL = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
  1662. IU = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
  1663. IF( IU.LT.IL ) THEN
  1664. ITEMP = IU
  1665. IU = IL
  1666. IL = ITEMP
  1667. END IF
  1668. CALL DSTEMR( 'V', 'I', N, D5, WORK, VL, VU, IL, IU,
  1669. $ M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1670. $ WORK( N+1 ), LWORK-N, IWORK( 2*N+1 ),
  1671. $ LIWORK-2*N, IINFO )
  1672. IF( IINFO.NE.0 ) THEN
  1673. WRITE( NOUNIT, FMT = 9999 )'DSTEMR(V,I)', IINFO,
  1674. $ N, JTYPE, IOLDSD
  1675. INFO = ABS( IINFO )
  1676. IF( IINFO.LT.0 ) THEN
  1677. RETURN
  1678. ELSE
  1679. RESULT( 29 ) = ULPINV
  1680. GO TO 280
  1681. END IF
  1682. END IF
  1683. *
  1684. * Do Tests 29 and 30
  1685. *
  1686. CALL DSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
  1687. $ M, RESULT( 29 ) )
  1688. *
  1689. * Call DSTEMR to compute D2, do tests.
  1690. *
  1691. * Compute D2
  1692. *
  1693. CALL DCOPY( N, SD, 1, D5, 1 )
  1694. IF( N.GT.0 )
  1695. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1696. *
  1697. NTEST = 31
  1698. CALL DSTEMR( 'N', 'I', N, D5, WORK, VL, VU, IL, IU,
  1699. $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1700. $ WORK( N+1 ), LWORK-N, IWORK( 2*N+1 ),
  1701. $ LIWORK-2*N, IINFO )
  1702. IF( IINFO.NE.0 ) THEN
  1703. WRITE( NOUNIT, FMT = 9999 )'DSTEMR(N,I)', IINFO,
  1704. $ N, JTYPE, IOLDSD
  1705. INFO = ABS( IINFO )
  1706. IF( IINFO.LT.0 ) THEN
  1707. RETURN
  1708. ELSE
  1709. RESULT( 31 ) = ULPINV
  1710. GO TO 280
  1711. END IF
  1712. END IF
  1713. *
  1714. * Do Test 31
  1715. *
  1716. TEMP1 = ZERO
  1717. TEMP2 = ZERO
  1718. *
  1719. DO 240 J = 1, IU - IL + 1
  1720. TEMP1 = MAX( TEMP1, ABS( D1( J ) ),
  1721. $ ABS( D2( J ) ) )
  1722. TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  1723. 240 CONTINUE
  1724. *
  1725. RESULT( 31 ) = TEMP2 / MAX( UNFL,
  1726. $ ULP*MAX( TEMP1, TEMP2 ) )
  1727. *
  1728. *
  1729. * Call DSTEMR(V,V) to compute D1 and Z, do tests.
  1730. *
  1731. * Compute D1 and Z
  1732. *
  1733. CALL DCOPY( N, SD, 1, D5, 1 )
  1734. IF( N.GT.0 )
  1735. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1736. CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
  1737. *
  1738. NTEST = 32
  1739. *
  1740. IF( N.GT.0 ) THEN
  1741. IF( IL.NE.1 ) THEN
  1742. VL = D2( IL ) - MAX( HALF*
  1743. $ ( D2( IL )-D2( IL-1 ) ), ULP*ANORM,
  1744. $ TWO*RTUNFL )
  1745. ELSE
  1746. VL = D2( 1 ) - MAX( HALF*( D2( N )-D2( 1 ) ),
  1747. $ ULP*ANORM, TWO*RTUNFL )
  1748. END IF
  1749. IF( IU.NE.N ) THEN
  1750. VU = D2( IU ) + MAX( HALF*
  1751. $ ( D2( IU+1 )-D2( IU ) ), ULP*ANORM,
  1752. $ TWO*RTUNFL )
  1753. ELSE
  1754. VU = D2( N ) + MAX( HALF*( D2( N )-D2( 1 ) ),
  1755. $ ULP*ANORM, TWO*RTUNFL )
  1756. END IF
  1757. ELSE
  1758. VL = ZERO
  1759. VU = ONE
  1760. END IF
  1761. *
  1762. CALL DSTEMR( 'V', 'V', N, D5, WORK, VL, VU, IL, IU,
  1763. $ M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1764. $ WORK( N+1 ), LWORK-N, IWORK( 2*N+1 ),
  1765. $ LIWORK-2*N, IINFO )
  1766. IF( IINFO.NE.0 ) THEN
  1767. WRITE( NOUNIT, FMT = 9999 )'DSTEMR(V,V)', IINFO,
  1768. $ N, JTYPE, IOLDSD
  1769. INFO = ABS( IINFO )
  1770. IF( IINFO.LT.0 ) THEN
  1771. RETURN
  1772. ELSE
  1773. RESULT( 32 ) = ULPINV
  1774. GO TO 280
  1775. END IF
  1776. END IF
  1777. *
  1778. * Do Tests 32 and 33
  1779. *
  1780. CALL DSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
  1781. $ M, RESULT( 32 ) )
  1782. *
  1783. * Call DSTEMR to compute D2, do tests.
  1784. *
  1785. * Compute D2
  1786. *
  1787. CALL DCOPY( N, SD, 1, D5, 1 )
  1788. IF( N.GT.0 )
  1789. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1790. *
  1791. NTEST = 34
  1792. CALL DSTEMR( 'N', 'V', N, D5, WORK, VL, VU, IL, IU,
  1793. $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1794. $ WORK( N+1 ), LWORK-N, IWORK( 2*N+1 ),
  1795. $ LIWORK-2*N, IINFO )
  1796. IF( IINFO.NE.0 ) THEN
  1797. WRITE( NOUNIT, FMT = 9999 )'DSTEMR(N,V)', IINFO,
  1798. $ N, JTYPE, IOLDSD
  1799. INFO = ABS( IINFO )
  1800. IF( IINFO.LT.0 ) THEN
  1801. RETURN
  1802. ELSE
  1803. RESULT( 34 ) = ULPINV
  1804. GO TO 280
  1805. END IF
  1806. END IF
  1807. *
  1808. * Do Test 34
  1809. *
  1810. TEMP1 = ZERO
  1811. TEMP2 = ZERO
  1812. *
  1813. DO 250 J = 1, IU - IL + 1
  1814. TEMP1 = MAX( TEMP1, ABS( D1( J ) ),
  1815. $ ABS( D2( J ) ) )
  1816. TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  1817. 250 CONTINUE
  1818. *
  1819. RESULT( 34 ) = TEMP2 / MAX( UNFL,
  1820. $ ULP*MAX( TEMP1, TEMP2 ) )
  1821. ELSE
  1822. RESULT( 29 ) = ZERO
  1823. RESULT( 30 ) = ZERO
  1824. RESULT( 31 ) = ZERO
  1825. RESULT( 32 ) = ZERO
  1826. RESULT( 33 ) = ZERO
  1827. RESULT( 34 ) = ZERO
  1828. END IF
  1829. *
  1830. *
  1831. * Call DSTEMR(V,A) to compute D1 and Z, do tests.
  1832. *
  1833. * Compute D1 and Z
  1834. *
  1835. CALL DCOPY( N, SD, 1, D5, 1 )
  1836. IF( N.GT.0 )
  1837. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1838. *
  1839. NTEST = 35
  1840. *
  1841. CALL DSTEMR( 'V', 'A', N, D5, WORK, VL, VU, IL, IU,
  1842. $ M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1843. $ WORK( N+1 ), LWORK-N, IWORK( 2*N+1 ),
  1844. $ LIWORK-2*N, IINFO )
  1845. IF( IINFO.NE.0 ) THEN
  1846. WRITE( NOUNIT, FMT = 9999 )'DSTEMR(V,A)', IINFO, N,
  1847. $ JTYPE, IOLDSD
  1848. INFO = ABS( IINFO )
  1849. IF( IINFO.LT.0 ) THEN
  1850. RETURN
  1851. ELSE
  1852. RESULT( 35 ) = ULPINV
  1853. GO TO 280
  1854. END IF
  1855. END IF
  1856. *
  1857. * Do Tests 35 and 36
  1858. *
  1859. CALL DSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, M,
  1860. $ RESULT( 35 ) )
  1861. *
  1862. * Call DSTEMR to compute D2, do tests.
  1863. *
  1864. * Compute D2
  1865. *
  1866. CALL DCOPY( N, SD, 1, D5, 1 )
  1867. IF( N.GT.0 )
  1868. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1869. *
  1870. NTEST = 37
  1871. CALL DSTEMR( 'N', 'A', N, D5, WORK, VL, VU, IL, IU,
  1872. $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1873. $ WORK( N+1 ), LWORK-N, IWORK( 2*N+1 ),
  1874. $ LIWORK-2*N, IINFO )
  1875. IF( IINFO.NE.0 ) THEN
  1876. WRITE( NOUNIT, FMT = 9999 )'DSTEMR(N,A)', IINFO, N,
  1877. $ JTYPE, IOLDSD
  1878. INFO = ABS( IINFO )
  1879. IF( IINFO.LT.0 ) THEN
  1880. RETURN
  1881. ELSE
  1882. RESULT( 37 ) = ULPINV
  1883. GO TO 280
  1884. END IF
  1885. END IF
  1886. *
  1887. * Do Test 34
  1888. *
  1889. TEMP1 = ZERO
  1890. TEMP2 = ZERO
  1891. *
  1892. DO 260 J = 1, N
  1893. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
  1894. TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  1895. 260 CONTINUE
  1896. *
  1897. RESULT( 37 ) = TEMP2 / MAX( UNFL,
  1898. $ ULP*MAX( TEMP1, TEMP2 ) )
  1899. END IF
  1900. 270 CONTINUE
  1901. 280 CONTINUE
  1902. NTESTT = NTESTT + NTEST
  1903. *
  1904. * End of Loop -- Check for RESULT(j) > THRESH
  1905. *
  1906. *
  1907. * Print out tests which fail.
  1908. *
  1909. DO 290 JR = 1, NTEST
  1910. IF( RESULT( JR ).GE.THRESH ) THEN
  1911. *
  1912. * If this is the first test to fail,
  1913. * print a header to the data file.
  1914. *
  1915. IF( NERRS.EQ.0 ) THEN
  1916. WRITE( NOUNIT, FMT = 9998 )'DST'
  1917. WRITE( NOUNIT, FMT = 9997 )
  1918. WRITE( NOUNIT, FMT = 9996 )
  1919. WRITE( NOUNIT, FMT = 9995 )'Symmetric'
  1920. WRITE( NOUNIT, FMT = 9994 )
  1921. *
  1922. * Tests performed
  1923. *
  1924. WRITE( NOUNIT, FMT = 9988 )
  1925. END IF
  1926. NERRS = NERRS + 1
  1927. WRITE( NOUNIT, FMT = 9990 )N, IOLDSD, JTYPE, JR,
  1928. $ RESULT( JR )
  1929. END IF
  1930. 290 CONTINUE
  1931. 300 CONTINUE
  1932. 310 CONTINUE
  1933. *
  1934. * Summary
  1935. *
  1936. CALL DLASUM( 'DST', NOUNIT, NERRS, NTESTT )
  1937. RETURN
  1938. *
  1939. 9999 FORMAT( ' DCHKST: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
  1940. $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
  1941. *
  1942. 9998 FORMAT( / 1X, A3, ' -- Real Symmetric eigenvalue problem' )
  1943. 9997 FORMAT( ' Matrix types (see DCHKST for details): ' )
  1944. *
  1945. 9996 FORMAT( / ' Special Matrices:',
  1946. $ / ' 1=Zero matrix. ',
  1947. $ ' 5=Diagonal: clustered entries.',
  1948. $ / ' 2=Identity matrix. ',
  1949. $ ' 6=Diagonal: large, evenly spaced.',
  1950. $ / ' 3=Diagonal: evenly spaced entries. ',
  1951. $ ' 7=Diagonal: small, evenly spaced.',
  1952. $ / ' 4=Diagonal: geometr. spaced entries.' )
  1953. 9995 FORMAT( ' Dense ', A, ' Matrices:',
  1954. $ / ' 8=Evenly spaced eigenvals. ',
  1955. $ ' 12=Small, evenly spaced eigenvals.',
  1956. $ / ' 9=Geometrically spaced eigenvals. ',
  1957. $ ' 13=Matrix with random O(1) entries.',
  1958. $ / ' 10=Clustered eigenvalues. ',
  1959. $ ' 14=Matrix with large random entries.',
  1960. $ / ' 11=Large, evenly spaced eigenvals. ',
  1961. $ ' 15=Matrix with small random entries.' )
  1962. 9994 FORMAT( ' 16=Positive definite, evenly spaced eigenvalues',
  1963. $ / ' 17=Positive definite, geometrically spaced eigenvlaues',
  1964. $ / ' 18=Positive definite, clustered eigenvalues',
  1965. $ / ' 19=Positive definite, small evenly spaced eigenvalues',
  1966. $ / ' 20=Positive definite, large evenly spaced eigenvalues',
  1967. $ / ' 21=Diagonally dominant tridiagonal, geometrically',
  1968. $ ' spaced eigenvalues' )
  1969. *
  1970. 9990 FORMAT( ' N=', I5, ', seed=', 4( I4, ',' ), ' type ', I2,
  1971. $ ', test(', I2, ')=', G10.3 )
  1972. *
  1973. 9988 FORMAT( / 'Test performed: see DCHKST for details.', / )
  1974. * End of DCHKST
  1975. *
  1976. END