You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cla_porpvgrw.f 6.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216
  1. *> \brief \b CLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLA_PORPVGRW + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_porpvgrw.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_porpvgrw.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_porpvgrw.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * REAL FUNCTION CLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF, LDAF, WORK )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER*1 UPLO
  25. * INTEGER NCOLS, LDA, LDAF
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX A( LDA, * ), AF( LDAF, * )
  29. * REAL WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *>
  39. *> CLA_PORPVGRW computes the reciprocal pivot growth factor
  40. *> norm(A)/norm(U). The "max absolute element" norm is used. If this is
  41. *> much less than 1, the stability of the LU factorization of the
  42. *> (equilibrated) matrix A could be poor. This also means that the
  43. *> solution X, estimated condition numbers, and error bounds could be
  44. *> unreliable.
  45. *> \endverbatim
  46. *
  47. * Arguments:
  48. * ==========
  49. *
  50. *> \param[in] UPLO
  51. *> \verbatim
  52. *> UPLO is CHARACTER*1
  53. *> = 'U': Upper triangle of A is stored;
  54. *> = 'L': Lower triangle of A is stored.
  55. *> \endverbatim
  56. *>
  57. *> \param[in] NCOLS
  58. *> \verbatim
  59. *> NCOLS is INTEGER
  60. *> The number of columns of the matrix A. NCOLS >= 0.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] A
  64. *> \verbatim
  65. *> A is COMPLEX array, dimension (LDA,N)
  66. *> On entry, the N-by-N matrix A.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] LDA
  70. *> \verbatim
  71. *> LDA is INTEGER
  72. *> The leading dimension of the array A. LDA >= max(1,N).
  73. *> \endverbatim
  74. *>
  75. *> \param[in] AF
  76. *> \verbatim
  77. *> AF is COMPLEX array, dimension (LDAF,N)
  78. *> The triangular factor U or L from the Cholesky factorization
  79. *> A = U**T*U or A = L*L**T, as computed by CPOTRF.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] LDAF
  83. *> \verbatim
  84. *> LDAF is INTEGER
  85. *> The leading dimension of the array AF. LDAF >= max(1,N).
  86. *> \endverbatim
  87. *>
  88. *> \param[out] WORK
  89. *> \verbatim
  90. *> WORK is REAL array, dimension (2*N)
  91. *> \endverbatim
  92. *
  93. * Authors:
  94. * ========
  95. *
  96. *> \author Univ. of Tennessee
  97. *> \author Univ. of California Berkeley
  98. *> \author Univ. of Colorado Denver
  99. *> \author NAG Ltd.
  100. *
  101. *> \ingroup complexPOcomputational
  102. *
  103. * =====================================================================
  104. REAL FUNCTION CLA_PORPVGRW( UPLO, NCOLS, A, LDA, AF, LDAF, WORK )
  105. *
  106. * -- LAPACK computational routine --
  107. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  108. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  109. *
  110. * .. Scalar Arguments ..
  111. CHARACTER*1 UPLO
  112. INTEGER NCOLS, LDA, LDAF
  113. * ..
  114. * .. Array Arguments ..
  115. COMPLEX A( LDA, * ), AF( LDAF, * )
  116. REAL WORK( * )
  117. * ..
  118. *
  119. * =====================================================================
  120. *
  121. * .. Local Scalars ..
  122. INTEGER I, J
  123. REAL AMAX, UMAX, RPVGRW
  124. LOGICAL UPPER
  125. COMPLEX ZDUM
  126. * ..
  127. * .. External Functions ..
  128. EXTERNAL LSAME
  129. LOGICAL LSAME
  130. * ..
  131. * .. Intrinsic Functions ..
  132. INTRINSIC ABS, MAX, MIN, REAL, AIMAG
  133. * ..
  134. * .. Statement Functions ..
  135. REAL CABS1
  136. * ..
  137. * .. Statement Function Definitions ..
  138. CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
  139. * ..
  140. * .. Executable Statements ..
  141. UPPER = LSAME( 'Upper', UPLO )
  142. *
  143. * SPOTRF will have factored only the NCOLSxNCOLS leading submatrix,
  144. * so we restrict the growth search to that submatrix and use only
  145. * the first 2*NCOLS workspace entries.
  146. *
  147. RPVGRW = 1.0
  148. DO I = 1, 2*NCOLS
  149. WORK( I ) = 0.0
  150. END DO
  151. *
  152. * Find the max magnitude entry of each column.
  153. *
  154. IF ( UPPER ) THEN
  155. DO J = 1, NCOLS
  156. DO I = 1, J
  157. WORK( NCOLS+J ) =
  158. $ MAX( CABS1( A( I, J ) ), WORK( NCOLS+J ) )
  159. END DO
  160. END DO
  161. ELSE
  162. DO J = 1, NCOLS
  163. DO I = J, NCOLS
  164. WORK( NCOLS+J ) =
  165. $ MAX( CABS1( A( I, J ) ), WORK( NCOLS+J ) )
  166. END DO
  167. END DO
  168. END IF
  169. *
  170. * Now find the max magnitude entry of each column of the factor in
  171. * AF. No pivoting, so no permutations.
  172. *
  173. IF ( LSAME( 'Upper', UPLO ) ) THEN
  174. DO J = 1, NCOLS
  175. DO I = 1, J
  176. WORK( J ) = MAX( CABS1( AF( I, J ) ), WORK( J ) )
  177. END DO
  178. END DO
  179. ELSE
  180. DO J = 1, NCOLS
  181. DO I = J, NCOLS
  182. WORK( J ) = MAX( CABS1( AF( I, J ) ), WORK( J ) )
  183. END DO
  184. END DO
  185. END IF
  186. *
  187. * Compute the *inverse* of the max element growth factor. Dividing
  188. * by zero would imply the largest entry of the factor's column is
  189. * zero. Than can happen when either the column of A is zero or
  190. * massive pivots made the factor underflow to zero. Neither counts
  191. * as growth in itself, so simply ignore terms with zero
  192. * denominators.
  193. *
  194. IF ( LSAME( 'Upper', UPLO ) ) THEN
  195. DO I = 1, NCOLS
  196. UMAX = WORK( I )
  197. AMAX = WORK( NCOLS+I )
  198. IF ( UMAX /= 0.0 ) THEN
  199. RPVGRW = MIN( AMAX / UMAX, RPVGRW )
  200. END IF
  201. END DO
  202. ELSE
  203. DO I = 1, NCOLS
  204. UMAX = WORK( I )
  205. AMAX = WORK( NCOLS+I )
  206. IF ( UMAX /= 0.0 ) THEN
  207. RPVGRW = MIN( AMAX / UMAX, RPVGRW )
  208. END IF
  209. END DO
  210. END IF
  211. CLA_PORPVGRW = RPVGRW
  212. *
  213. * End of CLA_PORPVGRW
  214. *
  215. END