You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ztgexc.f 8.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297
  1. *> \brief \b ZTGEXC
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZTGEXC + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgexc.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgexc.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgexc.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
  22. * LDZ, IFST, ILST, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * LOGICAL WANTQ, WANTZ
  26. * INTEGER IFST, ILST, INFO, LDA, LDB, LDQ, LDZ, N
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  30. * $ Z( LDZ, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> ZTGEXC reorders the generalized Schur decomposition of a complex
  40. *> matrix pair (A,B), using an unitary equivalence transformation
  41. *> (A, B) := Q * (A, B) * Z**H, so that the diagonal block of (A, B) with
  42. *> row index IFST is moved to row ILST.
  43. *>
  44. *> (A, B) must be in generalized Schur canonical form, that is, A and
  45. *> B are both upper triangular.
  46. *>
  47. *> Optionally, the matrices Q and Z of generalized Schur vectors are
  48. *> updated.
  49. *>
  50. *> Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H
  51. *> Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] WANTQ
  58. *> \verbatim
  59. *> WANTQ is LOGICAL
  60. *> .TRUE. : update the left transformation matrix Q;
  61. *> .FALSE.: do not update Q.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] WANTZ
  65. *> \verbatim
  66. *> WANTZ is LOGICAL
  67. *> .TRUE. : update the right transformation matrix Z;
  68. *> .FALSE.: do not update Z.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] N
  72. *> \verbatim
  73. *> N is INTEGER
  74. *> The order of the matrices A and B. N >= 0.
  75. *> \endverbatim
  76. *>
  77. *> \param[in,out] A
  78. *> \verbatim
  79. *> A is COMPLEX*16 array, dimension (LDA,N)
  80. *> On entry, the upper triangular matrix A in the pair (A, B).
  81. *> On exit, the updated matrix A.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] LDA
  85. *> \verbatim
  86. *> LDA is INTEGER
  87. *> The leading dimension of the array A. LDA >= max(1,N).
  88. *> \endverbatim
  89. *>
  90. *> \param[in,out] B
  91. *> \verbatim
  92. *> B is COMPLEX*16 array, dimension (LDB,N)
  93. *> On entry, the upper triangular matrix B in the pair (A, B).
  94. *> On exit, the updated matrix B.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] LDB
  98. *> \verbatim
  99. *> LDB is INTEGER
  100. *> The leading dimension of the array B. LDB >= max(1,N).
  101. *> \endverbatim
  102. *>
  103. *> \param[in,out] Q
  104. *> \verbatim
  105. *> Q is COMPLEX*16 array, dimension (LDQ,N)
  106. *> On entry, if WANTQ = .TRUE., the unitary matrix Q.
  107. *> On exit, the updated matrix Q.
  108. *> If WANTQ = .FALSE., Q is not referenced.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] LDQ
  112. *> \verbatim
  113. *> LDQ is INTEGER
  114. *> The leading dimension of the array Q. LDQ >= 1;
  115. *> If WANTQ = .TRUE., LDQ >= N.
  116. *> \endverbatim
  117. *>
  118. *> \param[in,out] Z
  119. *> \verbatim
  120. *> Z is COMPLEX*16 array, dimension (LDZ,N)
  121. *> On entry, if WANTZ = .TRUE., the unitary matrix Z.
  122. *> On exit, the updated matrix Z.
  123. *> If WANTZ = .FALSE., Z is not referenced.
  124. *> \endverbatim
  125. *>
  126. *> \param[in] LDZ
  127. *> \verbatim
  128. *> LDZ is INTEGER
  129. *> The leading dimension of the array Z. LDZ >= 1;
  130. *> If WANTZ = .TRUE., LDZ >= N.
  131. *> \endverbatim
  132. *>
  133. *> \param[in] IFST
  134. *> \verbatim
  135. *> IFST is INTEGER
  136. *> \endverbatim
  137. *>
  138. *> \param[in,out] ILST
  139. *> \verbatim
  140. *> ILST is INTEGER
  141. *> Specify the reordering of the diagonal blocks of (A, B).
  142. *> The block with row index IFST is moved to row ILST, by a
  143. *> sequence of swapping between adjacent blocks.
  144. *> \endverbatim
  145. *>
  146. *> \param[out] INFO
  147. *> \verbatim
  148. *> INFO is INTEGER
  149. *> =0: Successful exit.
  150. *> <0: if INFO = -i, the i-th argument had an illegal value.
  151. *> =1: The transformed matrix pair (A, B) would be too far
  152. *> from generalized Schur form; the problem is ill-
  153. *> conditioned. (A, B) may have been partially reordered,
  154. *> and ILST points to the first row of the current
  155. *> position of the block being moved.
  156. *> \endverbatim
  157. *
  158. * Authors:
  159. * ========
  160. *
  161. *> \author Univ. of Tennessee
  162. *> \author Univ. of California Berkeley
  163. *> \author Univ. of Colorado Denver
  164. *> \author NAG Ltd.
  165. *
  166. *> \ingroup complex16GEcomputational
  167. *
  168. *> \par Contributors:
  169. * ==================
  170. *>
  171. *> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
  172. *> Umea University, S-901 87 Umea, Sweden.
  173. *
  174. *> \par References:
  175. * ================
  176. *>
  177. *> [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
  178. *> Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
  179. *> M.S. Moonen et al (eds), Linear Algebra for Large Scale and
  180. *> Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
  181. *> \n
  182. *> [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
  183. *> Eigenvalues of a Regular Matrix Pair (A, B) and Condition
  184. *> Estimation: Theory, Algorithms and Software, Report
  185. *> UMINF - 94.04, Department of Computing Science, Umea University,
  186. *> S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
  187. *> To appear in Numerical Algorithms, 1996.
  188. *> \n
  189. *> [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
  190. *> for Solving the Generalized Sylvester Equation and Estimating the
  191. *> Separation between Regular Matrix Pairs, Report UMINF - 93.23,
  192. *> Department of Computing Science, Umea University, S-901 87 Umea,
  193. *> Sweden, December 1993, Revised April 1994, Also as LAPACK working
  194. *> Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
  195. *> 1996.
  196. *>
  197. * =====================================================================
  198. SUBROUTINE ZTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
  199. $ LDZ, IFST, ILST, INFO )
  200. *
  201. * -- LAPACK computational routine --
  202. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  203. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  204. *
  205. * .. Scalar Arguments ..
  206. LOGICAL WANTQ, WANTZ
  207. INTEGER IFST, ILST, INFO, LDA, LDB, LDQ, LDZ, N
  208. * ..
  209. * .. Array Arguments ..
  210. COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  211. $ Z( LDZ, * )
  212. * ..
  213. *
  214. * =====================================================================
  215. *
  216. * .. Local Scalars ..
  217. INTEGER HERE
  218. * ..
  219. * .. External Subroutines ..
  220. EXTERNAL XERBLA, ZTGEX2
  221. * ..
  222. * .. Intrinsic Functions ..
  223. INTRINSIC MAX
  224. * ..
  225. * .. Executable Statements ..
  226. *
  227. * Decode and test input arguments.
  228. INFO = 0
  229. IF( N.LT.0 ) THEN
  230. INFO = -3
  231. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  232. INFO = -5
  233. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  234. INFO = -7
  235. ELSE IF( LDQ.LT.1 .OR. WANTQ .AND. ( LDQ.LT.MAX( 1, N ) ) ) THEN
  236. INFO = -9
  237. ELSE IF( LDZ.LT.1 .OR. WANTZ .AND. ( LDZ.LT.MAX( 1, N ) ) ) THEN
  238. INFO = -11
  239. ELSE IF( IFST.LT.1 .OR. IFST.GT.N ) THEN
  240. INFO = -12
  241. ELSE IF( ILST.LT.1 .OR. ILST.GT.N ) THEN
  242. INFO = -13
  243. END IF
  244. IF( INFO.NE.0 ) THEN
  245. CALL XERBLA( 'ZTGEXC', -INFO )
  246. RETURN
  247. END IF
  248. *
  249. * Quick return if possible
  250. *
  251. IF( N.LE.1 )
  252. $ RETURN
  253. IF( IFST.EQ.ILST )
  254. $ RETURN
  255. *
  256. IF( IFST.LT.ILST ) THEN
  257. *
  258. HERE = IFST
  259. *
  260. 10 CONTINUE
  261. *
  262. * Swap with next one below
  263. *
  264. CALL ZTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ,
  265. $ HERE, INFO )
  266. IF( INFO.NE.0 ) THEN
  267. ILST = HERE
  268. RETURN
  269. END IF
  270. HERE = HERE + 1
  271. IF( HERE.LT.ILST )
  272. $ GO TO 10
  273. HERE = HERE - 1
  274. ELSE
  275. HERE = IFST - 1
  276. *
  277. 20 CONTINUE
  278. *
  279. * Swap with next one above
  280. *
  281. CALL ZTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ,
  282. $ HERE, INFO )
  283. IF( INFO.NE.0 ) THEN
  284. ILST = HERE
  285. RETURN
  286. END IF
  287. HERE = HERE - 1
  288. IF( HERE.GE.ILST )
  289. $ GO TO 20
  290. HERE = HERE + 1
  291. END IF
  292. ILST = HERE
  293. RETURN
  294. *
  295. * End of ZTGEXC
  296. *
  297. END