You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zsycon_rook.f 6.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252
  1. *> \brief \b ZSYCON_ROOK
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZSYCON_ROOK + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsycon_rook.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsycon_rook.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsycon_rook.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZSYCON_ROOK( UPLO, N, A, LDA, IPIV, ANORM, RCOND,
  22. * WORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO
  26. * INTEGER INFO, LDA, N
  27. * DOUBLE PRECISION ANORM, RCOND
  28. * ..
  29. * .. Array Arguments ..
  30. * INTEGER IPIV( * )
  31. * COMPLEX*16 A( LDA, * ), WORK( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> ZSYCON_ROOK estimates the reciprocal of the condition number (in the
  41. *> 1-norm) of a complex symmetric matrix A using the factorization
  42. *> A = U*D*U**T or A = L*D*L**T computed by ZSYTRF_ROOK.
  43. *>
  44. *> An estimate is obtained for norm(inv(A)), and the reciprocal of the
  45. *> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> Specifies whether the details of the factorization are stored
  55. *> as an upper or lower triangular matrix.
  56. *> = 'U': Upper triangular, form is A = U*D*U**T;
  57. *> = 'L': Lower triangular, form is A = L*D*L**T.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] N
  61. *> \verbatim
  62. *> N is INTEGER
  63. *> The order of the matrix A. N >= 0.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] A
  67. *> \verbatim
  68. *> A is COMPLEX*16 array, dimension (LDA,N)
  69. *> The block diagonal matrix D and the multipliers used to
  70. *> obtain the factor U or L as computed by ZSYTRF_ROOK.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] LDA
  74. *> \verbatim
  75. *> LDA is INTEGER
  76. *> The leading dimension of the array A. LDA >= max(1,N).
  77. *> \endverbatim
  78. *>
  79. *> \param[in] IPIV
  80. *> \verbatim
  81. *> IPIV is INTEGER array, dimension (N)
  82. *> Details of the interchanges and the block structure of D
  83. *> as determined by ZSYTRF_ROOK.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] ANORM
  87. *> \verbatim
  88. *> ANORM is DOUBLE PRECISION
  89. *> The 1-norm of the original matrix A.
  90. *> \endverbatim
  91. *>
  92. *> \param[out] RCOND
  93. *> \verbatim
  94. *> RCOND is DOUBLE PRECISION
  95. *> The reciprocal of the condition number of the matrix A,
  96. *> computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
  97. *> estimate of the 1-norm of inv(A) computed in this routine.
  98. *> \endverbatim
  99. *>
  100. *> \param[out] WORK
  101. *> \verbatim
  102. *> WORK is COMPLEX*16 array, dimension (2*N)
  103. *> \endverbatim
  104. *>
  105. *> \param[out] INFO
  106. *> \verbatim
  107. *> INFO is INTEGER
  108. *> = 0: successful exit
  109. *> < 0: if INFO = -i, the i-th argument had an illegal value
  110. *> \endverbatim
  111. *
  112. * Authors:
  113. * ========
  114. *
  115. *> \author Univ. of Tennessee
  116. *> \author Univ. of California Berkeley
  117. *> \author Univ. of Colorado Denver
  118. *> \author NAG Ltd.
  119. *
  120. *> \ingroup complex16SYcomputational
  121. *
  122. *> \par Contributors:
  123. * ==================
  124. *> \verbatim
  125. *>
  126. *> December 2016, Igor Kozachenko,
  127. *> Computer Science Division,
  128. *> University of California, Berkeley
  129. *>
  130. *> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
  131. *> School of Mathematics,
  132. *> University of Manchester
  133. *>
  134. *> \endverbatim
  135. *
  136. * =====================================================================
  137. SUBROUTINE ZSYCON_ROOK( UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK,
  138. $ INFO )
  139. *
  140. * -- LAPACK computational routine --
  141. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  142. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  143. *
  144. * .. Scalar Arguments ..
  145. CHARACTER UPLO
  146. INTEGER INFO, LDA, N
  147. DOUBLE PRECISION ANORM, RCOND
  148. * ..
  149. * .. Array Arguments ..
  150. INTEGER IPIV( * )
  151. COMPLEX*16 A( LDA, * ), WORK( * )
  152. * ..
  153. *
  154. * =====================================================================
  155. *
  156. * .. Parameters ..
  157. DOUBLE PRECISION ONE, ZERO
  158. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  159. COMPLEX*16 CZERO
  160. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
  161. * ..
  162. * .. Local Scalars ..
  163. LOGICAL UPPER
  164. INTEGER I, KASE
  165. DOUBLE PRECISION AINVNM
  166. * ..
  167. * .. Local Arrays ..
  168. INTEGER ISAVE( 3 )
  169. * ..
  170. * .. External Functions ..
  171. LOGICAL LSAME
  172. EXTERNAL LSAME
  173. * ..
  174. * .. External Subroutines ..
  175. EXTERNAL ZLACN2, ZSYTRS_ROOK, XERBLA
  176. * ..
  177. * .. Intrinsic Functions ..
  178. INTRINSIC MAX
  179. * ..
  180. * .. Executable Statements ..
  181. *
  182. * Test the input parameters.
  183. *
  184. INFO = 0
  185. UPPER = LSAME( UPLO, 'U' )
  186. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  187. INFO = -1
  188. ELSE IF( N.LT.0 ) THEN
  189. INFO = -2
  190. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  191. INFO = -4
  192. ELSE IF( ANORM.LT.ZERO ) THEN
  193. INFO = -6
  194. END IF
  195. IF( INFO.NE.0 ) THEN
  196. CALL XERBLA( 'ZSYCON_ROOK', -INFO )
  197. RETURN
  198. END IF
  199. *
  200. * Quick return if possible
  201. *
  202. RCOND = ZERO
  203. IF( N.EQ.0 ) THEN
  204. RCOND = ONE
  205. RETURN
  206. ELSE IF( ANORM.LE.ZERO ) THEN
  207. RETURN
  208. END IF
  209. *
  210. * Check that the diagonal matrix D is nonsingular.
  211. *
  212. IF( UPPER ) THEN
  213. *
  214. * Upper triangular storage: examine D from bottom to top
  215. *
  216. DO 10 I = N, 1, -1
  217. IF( IPIV( I ).GT.0 .AND. A( I, I ).EQ.CZERO )
  218. $ RETURN
  219. 10 CONTINUE
  220. ELSE
  221. *
  222. * Lower triangular storage: examine D from top to bottom.
  223. *
  224. DO 20 I = 1, N
  225. IF( IPIV( I ).GT.0 .AND. A( I, I ).EQ.CZERO )
  226. $ RETURN
  227. 20 CONTINUE
  228. END IF
  229. *
  230. * Estimate the 1-norm of the inverse.
  231. *
  232. KASE = 0
  233. 30 CONTINUE
  234. CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
  235. IF( KASE.NE.0 ) THEN
  236. *
  237. * Multiply by inv(L*D*L**T) or inv(U*D*U**T).
  238. *
  239. CALL ZSYTRS_ROOK( UPLO, N, 1, A, LDA, IPIV, WORK, N, INFO )
  240. GO TO 30
  241. END IF
  242. *
  243. * Compute the estimate of the reciprocal condition number.
  244. *
  245. IF( AINVNM.NE.ZERO )
  246. $ RCOND = ( ONE / AINVNM ) / ANORM
  247. *
  248. RETURN
  249. *
  250. * End of ZSYCON_ROOK
  251. *
  252. END