You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlar2v.f 4.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166
  1. *> \brief \b ZLAR2V applies a vector of plane rotations with real cosines and complex sines from both sides to a sequence of 2-by-2 symmetric/Hermitian matrices.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLAR2V + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlar2v.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlar2v.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlar2v.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZLAR2V( N, X, Y, Z, INCX, C, S, INCC )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INCC, INCX, N
  25. * ..
  26. * .. Array Arguments ..
  27. * DOUBLE PRECISION C( * )
  28. * COMPLEX*16 S( * ), X( * ), Y( * ), Z( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> ZLAR2V applies a vector of complex plane rotations with real cosines
  38. *> from both sides to a sequence of 2-by-2 complex Hermitian matrices,
  39. *> defined by the elements of the vectors x, y and z. For i = 1,2,...,n
  40. *>
  41. *> ( x(i) z(i) ) :=
  42. *> ( conjg(z(i)) y(i) )
  43. *>
  44. *> ( c(i) conjg(s(i)) ) ( x(i) z(i) ) ( c(i) -conjg(s(i)) )
  45. *> ( -s(i) c(i) ) ( conjg(z(i)) y(i) ) ( s(i) c(i) )
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] N
  52. *> \verbatim
  53. *> N is INTEGER
  54. *> The number of plane rotations to be applied.
  55. *> \endverbatim
  56. *>
  57. *> \param[in,out] X
  58. *> \verbatim
  59. *> X is COMPLEX*16 array, dimension (1+(N-1)*INCX)
  60. *> The vector x; the elements of x are assumed to be real.
  61. *> \endverbatim
  62. *>
  63. *> \param[in,out] Y
  64. *> \verbatim
  65. *> Y is COMPLEX*16 array, dimension (1+(N-1)*INCX)
  66. *> The vector y; the elements of y are assumed to be real.
  67. *> \endverbatim
  68. *>
  69. *> \param[in,out] Z
  70. *> \verbatim
  71. *> Z is COMPLEX*16 array, dimension (1+(N-1)*INCX)
  72. *> The vector z.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] INCX
  76. *> \verbatim
  77. *> INCX is INTEGER
  78. *> The increment between elements of X, Y and Z. INCX > 0.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] C
  82. *> \verbatim
  83. *> C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
  84. *> The cosines of the plane rotations.
  85. *> \endverbatim
  86. *>
  87. *> \param[in] S
  88. *> \verbatim
  89. *> S is COMPLEX*16 array, dimension (1+(N-1)*INCC)
  90. *> The sines of the plane rotations.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] INCC
  94. *> \verbatim
  95. *> INCC is INTEGER
  96. *> The increment between elements of C and S. INCC > 0.
  97. *> \endverbatim
  98. *
  99. * Authors:
  100. * ========
  101. *
  102. *> \author Univ. of Tennessee
  103. *> \author Univ. of California Berkeley
  104. *> \author Univ. of Colorado Denver
  105. *> \author NAG Ltd.
  106. *
  107. *> \ingroup complex16OTHERauxiliary
  108. *
  109. * =====================================================================
  110. SUBROUTINE ZLAR2V( N, X, Y, Z, INCX, C, S, INCC )
  111. *
  112. * -- LAPACK auxiliary routine --
  113. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  114. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  115. *
  116. * .. Scalar Arguments ..
  117. INTEGER INCC, INCX, N
  118. * ..
  119. * .. Array Arguments ..
  120. DOUBLE PRECISION C( * )
  121. COMPLEX*16 S( * ), X( * ), Y( * ), Z( * )
  122. * ..
  123. *
  124. * =====================================================================
  125. *
  126. * .. Local Scalars ..
  127. INTEGER I, IC, IX
  128. DOUBLE PRECISION CI, SII, SIR, T1I, T1R, T5, T6, XI, YI, ZII,
  129. $ ZIR
  130. COMPLEX*16 SI, T2, T3, T4, ZI
  131. * ..
  132. * .. Intrinsic Functions ..
  133. INTRINSIC DBLE, DCMPLX, DCONJG, DIMAG
  134. * ..
  135. * .. Executable Statements ..
  136. *
  137. IX = 1
  138. IC = 1
  139. DO 10 I = 1, N
  140. XI = DBLE( X( IX ) )
  141. YI = DBLE( Y( IX ) )
  142. ZI = Z( IX )
  143. ZIR = DBLE( ZI )
  144. ZII = DIMAG( ZI )
  145. CI = C( IC )
  146. SI = S( IC )
  147. SIR = DBLE( SI )
  148. SII = DIMAG( SI )
  149. T1R = SIR*ZIR - SII*ZII
  150. T1I = SIR*ZII + SII*ZIR
  151. T2 = CI*ZI
  152. T3 = T2 - DCONJG( SI )*XI
  153. T4 = DCONJG( T2 ) + SI*YI
  154. T5 = CI*XI + T1R
  155. T6 = CI*YI - T1R
  156. X( IX ) = CI*T5 + ( SIR*DBLE( T4 )+SII*DIMAG( T4 ) )
  157. Y( IX ) = CI*T6 - ( SIR*DBLE( T3 )-SII*DIMAG( T3 ) )
  158. Z( IX ) = CI*T3 + DCONJG( SI )*DCMPLX( T6, T1I )
  159. IX = IX + INCX
  160. IC = IC + INCC
  161. 10 CONTINUE
  162. RETURN
  163. *
  164. * End of ZLAR2V
  165. *
  166. END