You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlantb.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360
  1. *> \brief \b ZLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLANTB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlantb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlantb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlantb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION ZLANTB( NORM, UPLO, DIAG, N, K, AB,
  22. * LDAB, WORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIAG, NORM, UPLO
  26. * INTEGER K, LDAB, N
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION WORK( * )
  30. * COMPLEX*16 AB( LDAB, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> ZLANTB returns the value of the one norm, or the Frobenius norm, or
  40. *> the infinity norm, or the element of largest absolute value of an
  41. *> n by n triangular band matrix A, with ( k + 1 ) diagonals.
  42. *> \endverbatim
  43. *>
  44. *> \return ZLANTB
  45. *> \verbatim
  46. *>
  47. *> ZLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  48. *> (
  49. *> ( norm1(A), NORM = '1', 'O' or 'o'
  50. *> (
  51. *> ( normI(A), NORM = 'I' or 'i'
  52. *> (
  53. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  54. *>
  55. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  56. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  57. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  58. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  59. *> \endverbatim
  60. *
  61. * Arguments:
  62. * ==========
  63. *
  64. *> \param[in] NORM
  65. *> \verbatim
  66. *> NORM is CHARACTER*1
  67. *> Specifies the value to be returned in ZLANTB as described
  68. *> above.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] UPLO
  72. *> \verbatim
  73. *> UPLO is CHARACTER*1
  74. *> Specifies whether the matrix A is upper or lower triangular.
  75. *> = 'U': Upper triangular
  76. *> = 'L': Lower triangular
  77. *> \endverbatim
  78. *>
  79. *> \param[in] DIAG
  80. *> \verbatim
  81. *> DIAG is CHARACTER*1
  82. *> Specifies whether or not the matrix A is unit triangular.
  83. *> = 'N': Non-unit triangular
  84. *> = 'U': Unit triangular
  85. *> \endverbatim
  86. *>
  87. *> \param[in] N
  88. *> \verbatim
  89. *> N is INTEGER
  90. *> The order of the matrix A. N >= 0. When N = 0, ZLANTB is
  91. *> set to zero.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] K
  95. *> \verbatim
  96. *> K is INTEGER
  97. *> The number of super-diagonals of the matrix A if UPLO = 'U',
  98. *> or the number of sub-diagonals of the matrix A if UPLO = 'L'.
  99. *> K >= 0.
  100. *> \endverbatim
  101. *>
  102. *> \param[in] AB
  103. *> \verbatim
  104. *> AB is COMPLEX*16 array, dimension (LDAB,N)
  105. *> The upper or lower triangular band matrix A, stored in the
  106. *> first k+1 rows of AB. The j-th column of A is stored
  107. *> in the j-th column of the array AB as follows:
  108. *> if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
  109. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k).
  110. *> Note that when DIAG = 'U', the elements of the array AB
  111. *> corresponding to the diagonal elements of the matrix A are
  112. *> not referenced, but are assumed to be one.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] LDAB
  116. *> \verbatim
  117. *> LDAB is INTEGER
  118. *> The leading dimension of the array AB. LDAB >= K+1.
  119. *> \endverbatim
  120. *>
  121. *> \param[out] WORK
  122. *> \verbatim
  123. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  124. *> where LWORK >= N when NORM = 'I'; otherwise, WORK is not
  125. *> referenced.
  126. *> \endverbatim
  127. *
  128. * Authors:
  129. * ========
  130. *
  131. *> \author Univ. of Tennessee
  132. *> \author Univ. of California Berkeley
  133. *> \author Univ. of Colorado Denver
  134. *> \author NAG Ltd.
  135. *
  136. *> \ingroup complex16OTHERauxiliary
  137. *
  138. * =====================================================================
  139. DOUBLE PRECISION FUNCTION ZLANTB( NORM, UPLO, DIAG, N, K, AB,
  140. $ LDAB, WORK )
  141. *
  142. * -- LAPACK auxiliary routine --
  143. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  144. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  145. *
  146. * .. Scalar Arguments ..
  147. CHARACTER DIAG, NORM, UPLO
  148. INTEGER K, LDAB, N
  149. * ..
  150. * .. Array Arguments ..
  151. DOUBLE PRECISION WORK( * )
  152. COMPLEX*16 AB( LDAB, * )
  153. * ..
  154. *
  155. * =====================================================================
  156. *
  157. * .. Parameters ..
  158. DOUBLE PRECISION ONE, ZERO
  159. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  160. * ..
  161. * .. Local Scalars ..
  162. LOGICAL UDIAG
  163. INTEGER I, J, L
  164. DOUBLE PRECISION SCALE, SUM, VALUE
  165. * ..
  166. * .. External Functions ..
  167. LOGICAL LSAME, DISNAN
  168. EXTERNAL LSAME, DISNAN
  169. * ..
  170. * .. External Subroutines ..
  171. EXTERNAL ZLASSQ
  172. * ..
  173. * .. Intrinsic Functions ..
  174. INTRINSIC ABS, MAX, MIN, SQRT
  175. * ..
  176. * .. Executable Statements ..
  177. *
  178. IF( N.EQ.0 ) THEN
  179. VALUE = ZERO
  180. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  181. *
  182. * Find max(abs(A(i,j))).
  183. *
  184. IF( LSAME( DIAG, 'U' ) ) THEN
  185. VALUE = ONE
  186. IF( LSAME( UPLO, 'U' ) ) THEN
  187. DO 20 J = 1, N
  188. DO 10 I = MAX( K+2-J, 1 ), K
  189. SUM = ABS( AB( I, J ) )
  190. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  191. 10 CONTINUE
  192. 20 CONTINUE
  193. ELSE
  194. DO 40 J = 1, N
  195. DO 30 I = 2, MIN( N+1-J, K+1 )
  196. SUM = ABS( AB( I, J ) )
  197. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  198. 30 CONTINUE
  199. 40 CONTINUE
  200. END IF
  201. ELSE
  202. VALUE = ZERO
  203. IF( LSAME( UPLO, 'U' ) ) THEN
  204. DO 60 J = 1, N
  205. DO 50 I = MAX( K+2-J, 1 ), K + 1
  206. SUM = ABS( AB( I, J ) )
  207. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  208. 50 CONTINUE
  209. 60 CONTINUE
  210. ELSE
  211. DO 80 J = 1, N
  212. DO 70 I = 1, MIN( N+1-J, K+1 )
  213. SUM = ABS( AB( I, J ) )
  214. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  215. 70 CONTINUE
  216. 80 CONTINUE
  217. END IF
  218. END IF
  219. ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  220. *
  221. * Find norm1(A).
  222. *
  223. VALUE = ZERO
  224. UDIAG = LSAME( DIAG, 'U' )
  225. IF( LSAME( UPLO, 'U' ) ) THEN
  226. DO 110 J = 1, N
  227. IF( UDIAG ) THEN
  228. SUM = ONE
  229. DO 90 I = MAX( K+2-J, 1 ), K
  230. SUM = SUM + ABS( AB( I, J ) )
  231. 90 CONTINUE
  232. ELSE
  233. SUM = ZERO
  234. DO 100 I = MAX( K+2-J, 1 ), K + 1
  235. SUM = SUM + ABS( AB( I, J ) )
  236. 100 CONTINUE
  237. END IF
  238. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  239. 110 CONTINUE
  240. ELSE
  241. DO 140 J = 1, N
  242. IF( UDIAG ) THEN
  243. SUM = ONE
  244. DO 120 I = 2, MIN( N+1-J, K+1 )
  245. SUM = SUM + ABS( AB( I, J ) )
  246. 120 CONTINUE
  247. ELSE
  248. SUM = ZERO
  249. DO 130 I = 1, MIN( N+1-J, K+1 )
  250. SUM = SUM + ABS( AB( I, J ) )
  251. 130 CONTINUE
  252. END IF
  253. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  254. 140 CONTINUE
  255. END IF
  256. ELSE IF( LSAME( NORM, 'I' ) ) THEN
  257. *
  258. * Find normI(A).
  259. *
  260. VALUE = ZERO
  261. IF( LSAME( UPLO, 'U' ) ) THEN
  262. IF( LSAME( DIAG, 'U' ) ) THEN
  263. DO 150 I = 1, N
  264. WORK( I ) = ONE
  265. 150 CONTINUE
  266. DO 170 J = 1, N
  267. L = K + 1 - J
  268. DO 160 I = MAX( 1, J-K ), J - 1
  269. WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
  270. 160 CONTINUE
  271. 170 CONTINUE
  272. ELSE
  273. DO 180 I = 1, N
  274. WORK( I ) = ZERO
  275. 180 CONTINUE
  276. DO 200 J = 1, N
  277. L = K + 1 - J
  278. DO 190 I = MAX( 1, J-K ), J
  279. WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
  280. 190 CONTINUE
  281. 200 CONTINUE
  282. END IF
  283. ELSE
  284. IF( LSAME( DIAG, 'U' ) ) THEN
  285. DO 210 I = 1, N
  286. WORK( I ) = ONE
  287. 210 CONTINUE
  288. DO 230 J = 1, N
  289. L = 1 - J
  290. DO 220 I = J + 1, MIN( N, J+K )
  291. WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
  292. 220 CONTINUE
  293. 230 CONTINUE
  294. ELSE
  295. DO 240 I = 1, N
  296. WORK( I ) = ZERO
  297. 240 CONTINUE
  298. DO 260 J = 1, N
  299. L = 1 - J
  300. DO 250 I = J, MIN( N, J+K )
  301. WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
  302. 250 CONTINUE
  303. 260 CONTINUE
  304. END IF
  305. END IF
  306. DO 270 I = 1, N
  307. SUM = WORK( I )
  308. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  309. 270 CONTINUE
  310. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  311. *
  312. * Find normF(A).
  313. *
  314. IF( LSAME( UPLO, 'U' ) ) THEN
  315. IF( LSAME( DIAG, 'U' ) ) THEN
  316. SCALE = ONE
  317. SUM = N
  318. IF( K.GT.0 ) THEN
  319. DO 280 J = 2, N
  320. CALL ZLASSQ( MIN( J-1, K ),
  321. $ AB( MAX( K+2-J, 1 ), J ), 1, SCALE,
  322. $ SUM )
  323. 280 CONTINUE
  324. END IF
  325. ELSE
  326. SCALE = ZERO
  327. SUM = ONE
  328. DO 290 J = 1, N
  329. CALL ZLASSQ( MIN( J, K+1 ), AB( MAX( K+2-J, 1 ), J ),
  330. $ 1, SCALE, SUM )
  331. 290 CONTINUE
  332. END IF
  333. ELSE
  334. IF( LSAME( DIAG, 'U' ) ) THEN
  335. SCALE = ONE
  336. SUM = N
  337. IF( K.GT.0 ) THEN
  338. DO 300 J = 1, N - 1
  339. CALL ZLASSQ( MIN( N-J, K ), AB( 2, J ), 1, SCALE,
  340. $ SUM )
  341. 300 CONTINUE
  342. END IF
  343. ELSE
  344. SCALE = ZERO
  345. SUM = ONE
  346. DO 310 J = 1, N
  347. CALL ZLASSQ( MIN( N-J+1, K+1 ), AB( 1, J ), 1, SCALE,
  348. $ SUM )
  349. 310 CONTINUE
  350. END IF
  351. END IF
  352. VALUE = SCALE*SQRT( SUM )
  353. END IF
  354. *
  355. ZLANTB = VALUE
  356. RETURN
  357. *
  358. * End of ZLANTB
  359. *
  360. END