You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgerfs.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445
  1. *> \brief \b ZGERFS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZGERFS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgerfs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgerfs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgerfs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
  22. * X, LDX, FERR, BERR, WORK, RWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER TRANS
  26. * INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IPIV( * )
  30. * DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * )
  31. * COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  32. * $ WORK( * ), X( LDX, * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> ZGERFS improves the computed solution to a system of linear
  42. *> equations and provides error bounds and backward error estimates for
  43. *> the solution.
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] TRANS
  50. *> \verbatim
  51. *> TRANS is CHARACTER*1
  52. *> Specifies the form of the system of equations:
  53. *> = 'N': A * X = B (No transpose)
  54. *> = 'T': A**T * X = B (Transpose)
  55. *> = 'C': A**H * X = B (Conjugate transpose)
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] NRHS
  65. *> \verbatim
  66. *> NRHS is INTEGER
  67. *> The number of right hand sides, i.e., the number of columns
  68. *> of the matrices B and X. NRHS >= 0.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] A
  72. *> \verbatim
  73. *> A is COMPLEX*16 array, dimension (LDA,N)
  74. *> The original N-by-N matrix A.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] LDA
  78. *> \verbatim
  79. *> LDA is INTEGER
  80. *> The leading dimension of the array A. LDA >= max(1,N).
  81. *> \endverbatim
  82. *>
  83. *> \param[in] AF
  84. *> \verbatim
  85. *> AF is COMPLEX*16 array, dimension (LDAF,N)
  86. *> The factors L and U from the factorization A = P*L*U
  87. *> as computed by ZGETRF.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] LDAF
  91. *> \verbatim
  92. *> LDAF is INTEGER
  93. *> The leading dimension of the array AF. LDAF >= max(1,N).
  94. *> \endverbatim
  95. *>
  96. *> \param[in] IPIV
  97. *> \verbatim
  98. *> IPIV is INTEGER array, dimension (N)
  99. *> The pivot indices from ZGETRF; for 1<=i<=N, row i of the
  100. *> matrix was interchanged with row IPIV(i).
  101. *> \endverbatim
  102. *>
  103. *> \param[in] B
  104. *> \verbatim
  105. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  106. *> The right hand side matrix B.
  107. *> \endverbatim
  108. *>
  109. *> \param[in] LDB
  110. *> \verbatim
  111. *> LDB is INTEGER
  112. *> The leading dimension of the array B. LDB >= max(1,N).
  113. *> \endverbatim
  114. *>
  115. *> \param[in,out] X
  116. *> \verbatim
  117. *> X is COMPLEX*16 array, dimension (LDX,NRHS)
  118. *> On entry, the solution matrix X, as computed by ZGETRS.
  119. *> On exit, the improved solution matrix X.
  120. *> \endverbatim
  121. *>
  122. *> \param[in] LDX
  123. *> \verbatim
  124. *> LDX is INTEGER
  125. *> The leading dimension of the array X. LDX >= max(1,N).
  126. *> \endverbatim
  127. *>
  128. *> \param[out] FERR
  129. *> \verbatim
  130. *> FERR is DOUBLE PRECISION array, dimension (NRHS)
  131. *> The estimated forward error bound for each solution vector
  132. *> X(j) (the j-th column of the solution matrix X).
  133. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  134. *> is an estimated upper bound for the magnitude of the largest
  135. *> element in (X(j) - XTRUE) divided by the magnitude of the
  136. *> largest element in X(j). The estimate is as reliable as
  137. *> the estimate for RCOND, and is almost always a slight
  138. *> overestimate of the true error.
  139. *> \endverbatim
  140. *>
  141. *> \param[out] BERR
  142. *> \verbatim
  143. *> BERR is DOUBLE PRECISION array, dimension (NRHS)
  144. *> The componentwise relative backward error of each solution
  145. *> vector X(j) (i.e., the smallest relative change in
  146. *> any element of A or B that makes X(j) an exact solution).
  147. *> \endverbatim
  148. *>
  149. *> \param[out] WORK
  150. *> \verbatim
  151. *> WORK is COMPLEX*16 array, dimension (2*N)
  152. *> \endverbatim
  153. *>
  154. *> \param[out] RWORK
  155. *> \verbatim
  156. *> RWORK is DOUBLE PRECISION array, dimension (N)
  157. *> \endverbatim
  158. *>
  159. *> \param[out] INFO
  160. *> \verbatim
  161. *> INFO is INTEGER
  162. *> = 0: successful exit
  163. *> < 0: if INFO = -i, the i-th argument had an illegal value
  164. *> \endverbatim
  165. *
  166. *> \par Internal Parameters:
  167. * =========================
  168. *>
  169. *> \verbatim
  170. *> ITMAX is the maximum number of steps of iterative refinement.
  171. *> \endverbatim
  172. *
  173. * Authors:
  174. * ========
  175. *
  176. *> \author Univ. of Tennessee
  177. *> \author Univ. of California Berkeley
  178. *> \author Univ. of Colorado Denver
  179. *> \author NAG Ltd.
  180. *
  181. *> \ingroup complex16GEcomputational
  182. *
  183. * =====================================================================
  184. SUBROUTINE ZGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
  185. $ X, LDX, FERR, BERR, WORK, RWORK, INFO )
  186. *
  187. * -- LAPACK computational routine --
  188. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  189. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  190. *
  191. * .. Scalar Arguments ..
  192. CHARACTER TRANS
  193. INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
  194. * ..
  195. * .. Array Arguments ..
  196. INTEGER IPIV( * )
  197. DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * )
  198. COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  199. $ WORK( * ), X( LDX, * )
  200. * ..
  201. *
  202. * =====================================================================
  203. *
  204. * .. Parameters ..
  205. INTEGER ITMAX
  206. PARAMETER ( ITMAX = 5 )
  207. DOUBLE PRECISION ZERO
  208. PARAMETER ( ZERO = 0.0D+0 )
  209. COMPLEX*16 ONE
  210. PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
  211. DOUBLE PRECISION TWO
  212. PARAMETER ( TWO = 2.0D+0 )
  213. DOUBLE PRECISION THREE
  214. PARAMETER ( THREE = 3.0D+0 )
  215. * ..
  216. * .. Local Scalars ..
  217. LOGICAL NOTRAN
  218. CHARACTER TRANSN, TRANST
  219. INTEGER COUNT, I, J, K, KASE, NZ
  220. DOUBLE PRECISION EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  221. COMPLEX*16 ZDUM
  222. * ..
  223. * .. Local Arrays ..
  224. INTEGER ISAVE( 3 )
  225. * ..
  226. * .. External Functions ..
  227. LOGICAL LSAME
  228. DOUBLE PRECISION DLAMCH
  229. EXTERNAL LSAME, DLAMCH
  230. * ..
  231. * .. External Subroutines ..
  232. EXTERNAL XERBLA, ZAXPY, ZCOPY, ZGEMV, ZGETRS, ZLACN2
  233. * ..
  234. * .. Intrinsic Functions ..
  235. INTRINSIC ABS, DBLE, DIMAG, MAX
  236. * ..
  237. * .. Statement Functions ..
  238. DOUBLE PRECISION CABS1
  239. * ..
  240. * .. Statement Function definitions ..
  241. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  242. * ..
  243. * .. Executable Statements ..
  244. *
  245. * Test the input parameters.
  246. *
  247. INFO = 0
  248. NOTRAN = LSAME( TRANS, 'N' )
  249. IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  250. $ LSAME( TRANS, 'C' ) ) THEN
  251. INFO = -1
  252. ELSE IF( N.LT.0 ) THEN
  253. INFO = -2
  254. ELSE IF( NRHS.LT.0 ) THEN
  255. INFO = -3
  256. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  257. INFO = -5
  258. ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  259. INFO = -7
  260. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  261. INFO = -10
  262. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  263. INFO = -12
  264. END IF
  265. IF( INFO.NE.0 ) THEN
  266. CALL XERBLA( 'ZGERFS', -INFO )
  267. RETURN
  268. END IF
  269. *
  270. * Quick return if possible
  271. *
  272. IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  273. DO 10 J = 1, NRHS
  274. FERR( J ) = ZERO
  275. BERR( J ) = ZERO
  276. 10 CONTINUE
  277. RETURN
  278. END IF
  279. *
  280. IF( NOTRAN ) THEN
  281. TRANSN = 'N'
  282. TRANST = 'C'
  283. ELSE
  284. TRANSN = 'C'
  285. TRANST = 'N'
  286. END IF
  287. *
  288. * NZ = maximum number of nonzero elements in each row of A, plus 1
  289. *
  290. NZ = N + 1
  291. EPS = DLAMCH( 'Epsilon' )
  292. SAFMIN = DLAMCH( 'Safe minimum' )
  293. SAFE1 = NZ*SAFMIN
  294. SAFE2 = SAFE1 / EPS
  295. *
  296. * Do for each right hand side
  297. *
  298. DO 140 J = 1, NRHS
  299. *
  300. COUNT = 1
  301. LSTRES = THREE
  302. 20 CONTINUE
  303. *
  304. * Loop until stopping criterion is satisfied.
  305. *
  306. * Compute residual R = B - op(A) * X,
  307. * where op(A) = A, A**T, or A**H, depending on TRANS.
  308. *
  309. CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
  310. CALL ZGEMV( TRANS, N, N, -ONE, A, LDA, X( 1, J ), 1, ONE, WORK,
  311. $ 1 )
  312. *
  313. * Compute componentwise relative backward error from formula
  314. *
  315. * max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  316. *
  317. * where abs(Z) is the componentwise absolute value of the matrix
  318. * or vector Z. If the i-th component of the denominator is less
  319. * than SAFE2, then SAFE1 is added to the i-th components of the
  320. * numerator and denominator before dividing.
  321. *
  322. DO 30 I = 1, N
  323. RWORK( I ) = CABS1( B( I, J ) )
  324. 30 CONTINUE
  325. *
  326. * Compute abs(op(A))*abs(X) + abs(B).
  327. *
  328. IF( NOTRAN ) THEN
  329. DO 50 K = 1, N
  330. XK = CABS1( X( K, J ) )
  331. DO 40 I = 1, N
  332. RWORK( I ) = RWORK( I ) + CABS1( A( I, K ) )*XK
  333. 40 CONTINUE
  334. 50 CONTINUE
  335. ELSE
  336. DO 70 K = 1, N
  337. S = ZERO
  338. DO 60 I = 1, N
  339. S = S + CABS1( A( I, K ) )*CABS1( X( I, J ) )
  340. 60 CONTINUE
  341. RWORK( K ) = RWORK( K ) + S
  342. 70 CONTINUE
  343. END IF
  344. S = ZERO
  345. DO 80 I = 1, N
  346. IF( RWORK( I ).GT.SAFE2 ) THEN
  347. S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
  348. ELSE
  349. S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
  350. $ ( RWORK( I )+SAFE1 ) )
  351. END IF
  352. 80 CONTINUE
  353. BERR( J ) = S
  354. *
  355. * Test stopping criterion. Continue iterating if
  356. * 1) The residual BERR(J) is larger than machine epsilon, and
  357. * 2) BERR(J) decreased by at least a factor of 2 during the
  358. * last iteration, and
  359. * 3) At most ITMAX iterations tried.
  360. *
  361. IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  362. $ COUNT.LE.ITMAX ) THEN
  363. *
  364. * Update solution and try again.
  365. *
  366. CALL ZGETRS( TRANS, N, 1, AF, LDAF, IPIV, WORK, N, INFO )
  367. CALL ZAXPY( N, ONE, WORK, 1, X( 1, J ), 1 )
  368. LSTRES = BERR( J )
  369. COUNT = COUNT + 1
  370. GO TO 20
  371. END IF
  372. *
  373. * Bound error from formula
  374. *
  375. * norm(X - XTRUE) / norm(X) .le. FERR =
  376. * norm( abs(inv(op(A)))*
  377. * ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  378. *
  379. * where
  380. * norm(Z) is the magnitude of the largest component of Z
  381. * inv(op(A)) is the inverse of op(A)
  382. * abs(Z) is the componentwise absolute value of the matrix or
  383. * vector Z
  384. * NZ is the maximum number of nonzeros in any row of A, plus 1
  385. * EPS is machine epsilon
  386. *
  387. * The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  388. * is incremented by SAFE1 if the i-th component of
  389. * abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  390. *
  391. * Use ZLACN2 to estimate the infinity-norm of the matrix
  392. * inv(op(A)) * diag(W),
  393. * where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  394. *
  395. DO 90 I = 1, N
  396. IF( RWORK( I ).GT.SAFE2 ) THEN
  397. RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
  398. ELSE
  399. RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
  400. $ SAFE1
  401. END IF
  402. 90 CONTINUE
  403. *
  404. KASE = 0
  405. 100 CONTINUE
  406. CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
  407. IF( KASE.NE.0 ) THEN
  408. IF( KASE.EQ.1 ) THEN
  409. *
  410. * Multiply by diag(W)*inv(op(A)**H).
  411. *
  412. CALL ZGETRS( TRANST, N, 1, AF, LDAF, IPIV, WORK, N,
  413. $ INFO )
  414. DO 110 I = 1, N
  415. WORK( I ) = RWORK( I )*WORK( I )
  416. 110 CONTINUE
  417. ELSE
  418. *
  419. * Multiply by inv(op(A))*diag(W).
  420. *
  421. DO 120 I = 1, N
  422. WORK( I ) = RWORK( I )*WORK( I )
  423. 120 CONTINUE
  424. CALL ZGETRS( TRANSN, N, 1, AF, LDAF, IPIV, WORK, N,
  425. $ INFO )
  426. END IF
  427. GO TO 100
  428. END IF
  429. *
  430. * Normalize error.
  431. *
  432. LSTRES = ZERO
  433. DO 130 I = 1, N
  434. LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
  435. 130 CONTINUE
  436. IF( LSTRES.NE.ZERO )
  437. $ FERR( J ) = FERR( J ) / LSTRES
  438. *
  439. 140 CONTINUE
  440. *
  441. RETURN
  442. *
  443. * End of ZGERFS
  444. *
  445. END