You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgbequ.f 8.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330
  1. *> \brief \b ZGBEQU
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZGBEQU + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbequ.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbequ.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbequ.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZGBEQU( M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
  22. * AMAX, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER INFO, KL, KU, LDAB, M, N
  26. * DOUBLE PRECISION AMAX, COLCND, ROWCND
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION C( * ), R( * )
  30. * COMPLEX*16 AB( LDAB, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> ZGBEQU computes row and column scalings intended to equilibrate an
  40. *> M-by-N band matrix A and reduce its condition number. R returns the
  41. *> row scale factors and C the column scale factors, chosen to try to
  42. *> make the largest element in each row and column of the matrix B with
  43. *> elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.
  44. *>
  45. *> R(i) and C(j) are restricted to be between SMLNUM = smallest safe
  46. *> number and BIGNUM = largest safe number. Use of these scaling
  47. *> factors is not guaranteed to reduce the condition number of A but
  48. *> works well in practice.
  49. *> \endverbatim
  50. *
  51. * Arguments:
  52. * ==========
  53. *
  54. *> \param[in] M
  55. *> \verbatim
  56. *> M is INTEGER
  57. *> The number of rows of the matrix A. M >= 0.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] N
  61. *> \verbatim
  62. *> N is INTEGER
  63. *> The number of columns of the matrix A. N >= 0.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] KL
  67. *> \verbatim
  68. *> KL is INTEGER
  69. *> The number of subdiagonals within the band of A. KL >= 0.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] KU
  73. *> \verbatim
  74. *> KU is INTEGER
  75. *> The number of superdiagonals within the band of A. KU >= 0.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] AB
  79. *> \verbatim
  80. *> AB is COMPLEX*16 array, dimension (LDAB,N)
  81. *> The band matrix A, stored in rows 1 to KL+KU+1. The j-th
  82. *> column of A is stored in the j-th column of the array AB as
  83. *> follows:
  84. *> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
  85. *> \endverbatim
  86. *>
  87. *> \param[in] LDAB
  88. *> \verbatim
  89. *> LDAB is INTEGER
  90. *> The leading dimension of the array AB. LDAB >= KL+KU+1.
  91. *> \endverbatim
  92. *>
  93. *> \param[out] R
  94. *> \verbatim
  95. *> R is DOUBLE PRECISION array, dimension (M)
  96. *> If INFO = 0, or INFO > M, R contains the row scale factors
  97. *> for A.
  98. *> \endverbatim
  99. *>
  100. *> \param[out] C
  101. *> \verbatim
  102. *> C is DOUBLE PRECISION array, dimension (N)
  103. *> If INFO = 0, C contains the column scale factors for A.
  104. *> \endverbatim
  105. *>
  106. *> \param[out] ROWCND
  107. *> \verbatim
  108. *> ROWCND is DOUBLE PRECISION
  109. *> If INFO = 0 or INFO > M, ROWCND contains the ratio of the
  110. *> smallest R(i) to the largest R(i). If ROWCND >= 0.1 and
  111. *> AMAX is neither too large nor too small, it is not worth
  112. *> scaling by R.
  113. *> \endverbatim
  114. *>
  115. *> \param[out] COLCND
  116. *> \verbatim
  117. *> COLCND is DOUBLE PRECISION
  118. *> If INFO = 0, COLCND contains the ratio of the smallest
  119. *> C(i) to the largest C(i). If COLCND >= 0.1, it is not
  120. *> worth scaling by C.
  121. *> \endverbatim
  122. *>
  123. *> \param[out] AMAX
  124. *> \verbatim
  125. *> AMAX is DOUBLE PRECISION
  126. *> Absolute value of largest matrix element. If AMAX is very
  127. *> close to overflow or very close to underflow, the matrix
  128. *> should be scaled.
  129. *> \endverbatim
  130. *>
  131. *> \param[out] INFO
  132. *> \verbatim
  133. *> INFO is INTEGER
  134. *> = 0: successful exit
  135. *> < 0: if INFO = -i, the i-th argument had an illegal value
  136. *> > 0: if INFO = i, and i is
  137. *> <= M: the i-th row of A is exactly zero
  138. *> > M: the (i-M)-th column of A is exactly zero
  139. *> \endverbatim
  140. *
  141. * Authors:
  142. * ========
  143. *
  144. *> \author Univ. of Tennessee
  145. *> \author Univ. of California Berkeley
  146. *> \author Univ. of Colorado Denver
  147. *> \author NAG Ltd.
  148. *
  149. *> \ingroup complex16GBcomputational
  150. *
  151. * =====================================================================
  152. SUBROUTINE ZGBEQU( M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
  153. $ AMAX, INFO )
  154. *
  155. * -- LAPACK computational routine --
  156. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  157. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  158. *
  159. * .. Scalar Arguments ..
  160. INTEGER INFO, KL, KU, LDAB, M, N
  161. DOUBLE PRECISION AMAX, COLCND, ROWCND
  162. * ..
  163. * .. Array Arguments ..
  164. DOUBLE PRECISION C( * ), R( * )
  165. COMPLEX*16 AB( LDAB, * )
  166. * ..
  167. *
  168. * =====================================================================
  169. *
  170. * .. Parameters ..
  171. DOUBLE PRECISION ONE, ZERO
  172. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  173. * ..
  174. * .. Local Scalars ..
  175. INTEGER I, J, KD
  176. DOUBLE PRECISION BIGNUM, RCMAX, RCMIN, SMLNUM
  177. COMPLEX*16 ZDUM
  178. * ..
  179. * .. External Functions ..
  180. DOUBLE PRECISION DLAMCH
  181. EXTERNAL DLAMCH
  182. * ..
  183. * .. External Subroutines ..
  184. EXTERNAL XERBLA
  185. * ..
  186. * .. Intrinsic Functions ..
  187. INTRINSIC ABS, DBLE, DIMAG, MAX, MIN
  188. * ..
  189. * .. Statement Functions ..
  190. DOUBLE PRECISION CABS1
  191. * ..
  192. * .. Statement Function definitions ..
  193. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  194. * ..
  195. * .. Executable Statements ..
  196. *
  197. * Test the input parameters
  198. *
  199. INFO = 0
  200. IF( M.LT.0 ) THEN
  201. INFO = -1
  202. ELSE IF( N.LT.0 ) THEN
  203. INFO = -2
  204. ELSE IF( KL.LT.0 ) THEN
  205. INFO = -3
  206. ELSE IF( KU.LT.0 ) THEN
  207. INFO = -4
  208. ELSE IF( LDAB.LT.KL+KU+1 ) THEN
  209. INFO = -6
  210. END IF
  211. IF( INFO.NE.0 ) THEN
  212. CALL XERBLA( 'ZGBEQU', -INFO )
  213. RETURN
  214. END IF
  215. *
  216. * Quick return if possible
  217. *
  218. IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  219. ROWCND = ONE
  220. COLCND = ONE
  221. AMAX = ZERO
  222. RETURN
  223. END IF
  224. *
  225. * Get machine constants.
  226. *
  227. SMLNUM = DLAMCH( 'S' )
  228. BIGNUM = ONE / SMLNUM
  229. *
  230. * Compute row scale factors.
  231. *
  232. DO 10 I = 1, M
  233. R( I ) = ZERO
  234. 10 CONTINUE
  235. *
  236. * Find the maximum element in each row.
  237. *
  238. KD = KU + 1
  239. DO 30 J = 1, N
  240. DO 20 I = MAX( J-KU, 1 ), MIN( J+KL, M )
  241. R( I ) = MAX( R( I ), CABS1( AB( KD+I-J, J ) ) )
  242. 20 CONTINUE
  243. 30 CONTINUE
  244. *
  245. * Find the maximum and minimum scale factors.
  246. *
  247. RCMIN = BIGNUM
  248. RCMAX = ZERO
  249. DO 40 I = 1, M
  250. RCMAX = MAX( RCMAX, R( I ) )
  251. RCMIN = MIN( RCMIN, R( I ) )
  252. 40 CONTINUE
  253. AMAX = RCMAX
  254. *
  255. IF( RCMIN.EQ.ZERO ) THEN
  256. *
  257. * Find the first zero scale factor and return an error code.
  258. *
  259. DO 50 I = 1, M
  260. IF( R( I ).EQ.ZERO ) THEN
  261. INFO = I
  262. RETURN
  263. END IF
  264. 50 CONTINUE
  265. ELSE
  266. *
  267. * Invert the scale factors.
  268. *
  269. DO 60 I = 1, M
  270. R( I ) = ONE / MIN( MAX( R( I ), SMLNUM ), BIGNUM )
  271. 60 CONTINUE
  272. *
  273. * Compute ROWCND = min(R(I)) / max(R(I))
  274. *
  275. ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  276. END IF
  277. *
  278. * Compute column scale factors
  279. *
  280. DO 70 J = 1, N
  281. C( J ) = ZERO
  282. 70 CONTINUE
  283. *
  284. * Find the maximum element in each column,
  285. * assuming the row scaling computed above.
  286. *
  287. KD = KU + 1
  288. DO 90 J = 1, N
  289. DO 80 I = MAX( J-KU, 1 ), MIN( J+KL, M )
  290. C( J ) = MAX( C( J ), CABS1( AB( KD+I-J, J ) )*R( I ) )
  291. 80 CONTINUE
  292. 90 CONTINUE
  293. *
  294. * Find the maximum and minimum scale factors.
  295. *
  296. RCMIN = BIGNUM
  297. RCMAX = ZERO
  298. DO 100 J = 1, N
  299. RCMIN = MIN( RCMIN, C( J ) )
  300. RCMAX = MAX( RCMAX, C( J ) )
  301. 100 CONTINUE
  302. *
  303. IF( RCMIN.EQ.ZERO ) THEN
  304. *
  305. * Find the first zero scale factor and return an error code.
  306. *
  307. DO 110 J = 1, N
  308. IF( C( J ).EQ.ZERO ) THEN
  309. INFO = M + J
  310. RETURN
  311. END IF
  312. 110 CONTINUE
  313. ELSE
  314. *
  315. * Invert the scale factors.
  316. *
  317. DO 120 J = 1, N
  318. C( J ) = ONE / MIN( MAX( C( J ), SMLNUM ), BIGNUM )
  319. 120 CONTINUE
  320. *
  321. * Compute COLCND = min(C(J)) / max(C(J))
  322. *
  323. COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  324. END IF
  325. *
  326. RETURN
  327. *
  328. * End of ZGBEQU
  329. *
  330. END