You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssytrs_aa.f 9.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330
  1. *> \brief \b SSYTRS_AA
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSYTRS_AA + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytrs_aa.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytrs_aa.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytrs_aa.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
  22. * WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER UPLO
  26. * INTEGER N, NRHS, LDA, LDB, LWORK, INFO
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IPIV( * )
  30. * REAL A( LDA, * ), B( LDB, * ), WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> SSYTRS_AA solves a system of linear equations A*X = B with a real
  40. *> symmetric matrix A using the factorization A = U**T*T*U or
  41. *> A = L*T*L**T computed by SSYTRF_AA.
  42. *> \endverbatim
  43. *
  44. * Arguments:
  45. * ==========
  46. *
  47. *> \param[in] UPLO
  48. *> \verbatim
  49. *> UPLO is CHARACTER*1
  50. *> Specifies whether the details of the factorization are stored
  51. *> as an upper or lower triangular matrix.
  52. *> = 'U': Upper triangular, form is A = U**T*T*U;
  53. *> = 'L': Lower triangular, form is A = L*T*L**T.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] N
  57. *> \verbatim
  58. *> N is INTEGER
  59. *> The order of the matrix A. N >= 0.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] NRHS
  63. *> \verbatim
  64. *> NRHS is INTEGER
  65. *> The number of right hand sides, i.e., the number of columns
  66. *> of the matrix B. NRHS >= 0.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] A
  70. *> \verbatim
  71. *> A is REAL array, dimension (LDA,N)
  72. *> Details of factors computed by SSYTRF_AA.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] LDA
  76. *> \verbatim
  77. *> LDA is INTEGER
  78. *> The leading dimension of the array A. LDA >= max(1,N).
  79. *> \endverbatim
  80. *>
  81. *> \param[in] IPIV
  82. *> \verbatim
  83. *> IPIV is INTEGER array, dimension (N)
  84. *> Details of the interchanges as computed by SSYTRF_AA.
  85. *> \endverbatim
  86. *>
  87. *> \param[in,out] B
  88. *> \verbatim
  89. *> B is REAL array, dimension (LDB,NRHS)
  90. *> On entry, the right hand side matrix B.
  91. *> On exit, the solution matrix X.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] LDB
  95. *> \verbatim
  96. *> LDB is INTEGER
  97. *> The leading dimension of the array B. LDB >= max(1,N).
  98. *> \endverbatim
  99. *>
  100. *> \param[out] WORK
  101. *> \verbatim
  102. *> WORK is REAL array, dimension (MAX(1,LWORK))
  103. *> \endverbatim
  104. *>
  105. *> \param[in] LWORK
  106. *> \verbatim
  107. *> LWORK is INTEGER
  108. *> The dimension of the array WORK.
  109. *> If MIN(N,NRHS) = 0, LWORK >= 1, else LWORK >= 3*N-2.
  110. *>
  111. *> If LWORK = -1, then a workspace query is assumed; the routine
  112. *> only calculates the minimal size of the WORK array, returns
  113. *> this value as the first entry of the WORK array, and no error
  114. *> message related to LWORK is issued by XERBLA.
  115. *> \endverbatim
  116. *>
  117. *> \param[out] INFO
  118. *> \verbatim
  119. *> INFO is INTEGER
  120. *> = 0: successful exit
  121. *> < 0: if INFO = -i, the i-th argument had an illegal value
  122. *> \endverbatim
  123. *
  124. * Authors:
  125. * ========
  126. *
  127. *> \author Univ. of Tennessee
  128. *> \author Univ. of California Berkeley
  129. *> \author Univ. of Colorado Denver
  130. *> \author NAG Ltd.
  131. *
  132. *> \ingroup hetrs_aa
  133. *
  134. * =====================================================================
  135. SUBROUTINE SSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
  136. $ WORK, LWORK, INFO )
  137. *
  138. * -- LAPACK computational routine --
  139. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  140. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  141. *
  142. IMPLICIT NONE
  143. *
  144. * .. Scalar Arguments ..
  145. CHARACTER UPLO
  146. INTEGER N, NRHS, LDA, LDB, LWORK, INFO
  147. * ..
  148. * .. Array Arguments ..
  149. INTEGER IPIV( * )
  150. REAL A( LDA, * ), B( LDB, * ), WORK( * )
  151. * ..
  152. *
  153. * =====================================================================
  154. *
  155. REAL ONE
  156. PARAMETER ( ONE = 1.0E+0 )
  157. * ..
  158. * .. Local Scalars ..
  159. LOGICAL LQUERY, UPPER
  160. INTEGER K, KP, LWKMIN
  161. * ..
  162. * .. External Functions ..
  163. LOGICAL LSAME
  164. EXTERNAL LSAME
  165. REAL SROUNDUP_LWORK
  166. EXTERNAL SROUNDUP_LWORK
  167. * ..
  168. * .. External Subroutines ..
  169. EXTERNAL SGTSV, SSWAP, SLACPY, STRSM, XERBLA
  170. * ..
  171. * .. Intrinsic Functions ..
  172. INTRINSIC MIN, MAX
  173. * ..
  174. * .. Executable Statements ..
  175. *
  176. INFO = 0
  177. UPPER = LSAME( UPLO, 'U' )
  178. LQUERY = ( LWORK.EQ.-1 )
  179. IF( MIN( N, NRHS ).EQ.0 ) THEN
  180. LWKMIN = 1
  181. ELSE
  182. LWKMIN = 3*N-2
  183. END IF
  184. *
  185. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  186. INFO = -1
  187. ELSE IF( N.LT.0 ) THEN
  188. INFO = -2
  189. ELSE IF( NRHS.LT.0 ) THEN
  190. INFO = -3
  191. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  192. INFO = -5
  193. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  194. INFO = -8
  195. ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
  196. INFO = -10
  197. END IF
  198. IF( INFO.NE.0 ) THEN
  199. CALL XERBLA( 'SSYTRS_AA', -INFO )
  200. RETURN
  201. ELSE IF( LQUERY ) THEN
  202. WORK( 1 ) = SROUNDUP_LWORK( LWKMIN )
  203. RETURN
  204. END IF
  205. *
  206. * Quick return if possible
  207. *
  208. IF( MIN( N, NRHS ).EQ.0 )
  209. $ RETURN
  210. *
  211. IF( UPPER ) THEN
  212. *
  213. * Solve A*X = B, where A = U**T*T*U.
  214. *
  215. * 1) Forward substitution with U**T
  216. *
  217. IF( N.GT.1 ) THEN
  218. *
  219. * Pivot, P**T * B -> B
  220. *
  221. K = 1
  222. DO WHILE ( K.LE.N )
  223. KP = IPIV( K )
  224. IF( KP.NE.K )
  225. $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  226. K = K + 1
  227. END DO
  228. *
  229. * Compute U**T \ B -> B [ (U**T \P**T * B) ]
  230. *
  231. CALL STRSM( 'L', 'U', 'T', 'U', N-1, NRHS, ONE, A( 1, 2 ),
  232. $ LDA, B( 2, 1 ), LDB)
  233. END IF
  234. *
  235. * 2) Solve with triangular matrix T
  236. *
  237. * Compute T \ B -> B [ T \ (U**T \P**T * B) ]
  238. *
  239. CALL SLACPY( 'F', 1, N, A(1, 1), LDA+1, WORK(N), 1)
  240. IF( N.GT.1 ) THEN
  241. CALL SLACPY( 'F', 1, N-1, A(1, 2), LDA+1, WORK(1), 1)
  242. CALL SLACPY( 'F', 1, N-1, A(1, 2), LDA+1, WORK(2*N), 1)
  243. END IF
  244. CALL SGTSV(N, NRHS, WORK(1), WORK(N), WORK(2*N), B, LDB,
  245. $ INFO)
  246. *
  247. * 3) Backward substitution with U
  248. *
  249. IF( N.GT.1 ) THEN
  250. *
  251. *
  252. * Compute U \ B -> B [ U \ (T \ (U**T \P**T * B) ) ]
  253. *
  254. CALL STRSM( 'L', 'U', 'N', 'U', N-1, NRHS, ONE, A( 1, 2 ),
  255. $ LDA, B(2, 1), LDB)
  256. *
  257. * Pivot, P * B -> B [ P * (U \ (T \ (U**T \P**T * B) )) ]
  258. *
  259. K = N
  260. DO WHILE ( K.GE.1 )
  261. KP = IPIV( K )
  262. IF( KP.NE.K )
  263. $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  264. K = K - 1
  265. END DO
  266. END IF
  267. *
  268. ELSE
  269. *
  270. * Solve A*X = B, where A = L*T*L**T.
  271. *
  272. * 1) Forward substitution with L
  273. *
  274. IF( N.GT.1 ) THEN
  275. *
  276. * Pivot, P**T * B -> B
  277. *
  278. K = 1
  279. DO WHILE ( K.LE.N )
  280. KP = IPIV( K )
  281. IF( KP.NE.K )
  282. $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  283. K = K + 1
  284. END DO
  285. *
  286. * Compute L \ B -> B [ (L \P**T * B) ]
  287. *
  288. CALL STRSM( 'L', 'L', 'N', 'U', N-1, NRHS, ONE, A( 2, 1),
  289. $ LDA, B(2, 1), LDB)
  290. END IF
  291. *
  292. * 2) Solve with triangular matrix T
  293. *
  294. * Compute T \ B -> B [ T \ (L \P**T * B) ]
  295. *
  296. CALL SLACPY( 'F', 1, N, A(1, 1), LDA+1, WORK(N), 1)
  297. IF( N.GT.1 ) THEN
  298. CALL SLACPY( 'F', 1, N-1, A(2, 1), LDA+1, WORK(1), 1)
  299. CALL SLACPY( 'F', 1, N-1, A(2, 1), LDA+1, WORK(2*N), 1)
  300. END IF
  301. CALL SGTSV(N, NRHS, WORK(1), WORK(N), WORK(2*N), B, LDB,
  302. $ INFO)
  303. *
  304. * 3) Backward substitution with L**T
  305. *
  306. IF( N.GT.1 ) THEN
  307. *
  308. * Compute L**T \ B -> B [ L**T \ (T \ (L \P**T * B) ) ]
  309. *
  310. CALL STRSM( 'L', 'L', 'T', 'U', N-1, NRHS, ONE, A( 2, 1 ),
  311. $ LDA, B( 2, 1 ), LDB)
  312. *
  313. * Pivot, P * B -> B [ P * (L**T \ (T \ (L \P**T * B) )) ]
  314. *
  315. K = N
  316. DO WHILE ( K.GE.1 )
  317. KP = IPIV( K )
  318. IF( KP.NE.K )
  319. $ CALL SSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  320. K = K - 1
  321. END DO
  322. END IF
  323. *
  324. END IF
  325. *
  326. RETURN
  327. *
  328. * End of SSYTRS_AA
  329. *
  330. END